|
--- |
|
license: mit |
|
--- |
|
|
|
This repository contains the multi-modal multi-party conversation dataset described in the paper **Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding**. |
|
|
|
## Related Resources |
|
- Paper: [Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding](https://arxiv.org/abs/2412.17295) |
|
- Conversation Speaker Identification Model: [CSI model](https://huggingface.co/datasets/wangyueqian/friends_mmc) |
|
|
|
|
|
## Friends-MMC dataset |
|
The structure of this repository is as follows: |
|
``` |
|
datasets/ |
|
├── 5_turns/ |
|
│ ├── images/ |
|
│ ├── train-metadata.json |
|
│ ├── test-metadata.json |
|
│ ├── test-noisy-metadata.json |
|
├── 8_turns/ |
|
│ ├── images/ |
|
│ ├── train-metadata.json |
|
│ ├── test-metadata.json |
|
│ ├── test-noisy-metadata.json |
|
├── face_track_videos/ |
|
│ ├── s01e01/ // season name and episode name |
|
│ │ ├── 001196-001272 // each folder contains the cropped face tracks for each turn. The numbers in folder name is start and end frame number. |
|
│ │ │ ├── 0.avi 0.wav 1.avi 1.wav |
|
│ │ ├── 001272-001375 |
|
│ │ ├── ... |
|
│ ├── s01e02/ |
|
│ ├── s01e03/ |
|
│ ├── ... |
|
├── face_track_annotations/ |
|
│ ├── train/ |
|
│ │ ├── s01e01.pkl // each pickle file stores metadata (frame number and bounding box in the original video for each frame) of the cropped face track video |
|
│ │ ├── s01e02.pkl |
|
│ │ ├── ... |
|
│ ├── test/ // same format as files in `train` folder, but for season 03 (test set) |
|
│ │ ├── s03e01.pkl |
|
│ │ ├── s03e02.pkl |
|
│ │ ├── ... |
|
│ ├── test-noisy/ // some face tracks removed from the files in `test` folder |
|
│ │ ├── s03e01.pkl |
|
│ │ ├── s03e02.pkl |
|
│ │ ├── ... |
|
├── raw_videos/ // contains raw video of the TV Series |
|
├── ubuntu_dialogue_corpus/ // The Ubuntu Dialogue Corpus [1] which is used for training the text module of the CSI model |
|
├── README.md |
|
``` |
|
|
|
[1] Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., & Yan, R. (2019). GSN: A Graph-Structured Network for Multi-Party Dialogues. International Joint Conference on Artificial Intelligence. |
|
|
|
## Download the dataset |
|
The `face_track_videos/`, `face_track_annotations/`, `ubuntu_dialogue_corpus`, `5_turns/images/` and `8_turns/images/` folders are stored in zip files. Unzip them after downloading: |
|
```shell |
|
unzip -q face_track_annotations.zip |
|
unzip -q face_track_videos.zip |
|
unzip -q ubuntu_dialogue_corpus.zip |
|
cd 5_turns |
|
unzip -q images.zip |
|
cd ../8_turns |
|
unzip -q images.zip |
|
cd .. |
|
``` |
|
|
|
The `raw_videos/` folder is also stored in a zip file. However, as the raw videos are not used in the experiments, you can optionally download and unzip: |
|
```shell |
|
cat raw_videos.zip* > raw_videos.zip |
|
unzip -q raw_videos.zip |
|
``` |
|
|
|
## Data Format |
|
### Metadata |
|
Dialogue annotations are stored in `train-metadata.json`, `test-metadata.json` and `test-noisy-metadata.json`. Take an example from `5_turns/train-metadata.json`, each example is formatted as follows: |
|
```json |
|
[ |
|
{ |
|
"frame": "s01e01-001259", "video": "s01e01-001196-001272", "speaker": "monica", |
|
"content": "There's nothing to tell! He's just some guy I work with!", |
|
"faces": [[[763, 254, 807, 309], "carol"], [[582, 265, 620, 314], "monica"]] |
|
}, |
|
{ |
|
"frame": "s01e01-001323", "video": "s01e01-001272-001375", "speaker": "joey", |
|
"content": "C'mon, you're going out with the guy! There's gotta be something wrong with him!", |
|
"faces": [[[569, 175, 715, 371], "joey"]] |
|
}, |
|
{...}, {...}, {...} // three more above-like dicts |
|
] |
|
``` |
|
- "frame" corresponds to the filename of the single frame of this turn sampled from the video (`5_turns/images/s01e01-001259.jpg`), |
|
- "content" is the textual content of this turn, |
|
- "faces" is a list of face bounding boxes (x1, y1, x2, y2) and their corresponding speaker names in the image `5_turns/images/s01e01-001259.jpg`, |
|
- "video" corresponds to the filname of folder of face tracks (`s01e01/001196-001272`) in the`face_track_videos/` folder, |
|
- "speaker" is the ground truth speaker annotation. |
|
|
|
### Face tracks |
|
The face tracks that appears in the video corresponding to each turn are stored in a folder in the `face_track_videos/` folder. The folder name is the start and end frame number of the track. For example, `s01e01/001196-001272` contains the face tracks for the turn from frame 196 to frame 272 in episode `s01e01`. Each face track is stored in two files: `.avi` and `.wav`. The `.avi` file is the cropped face track video, and the `.wav` file is the corresponding audio of the frames. |
|
|
|
### Face track annotations |
|
The face track annotation for each episode is a python dictionary. Take an example from `face_track_annotations/s01e01.pkl`, each turn is formatted as follows: |
|
```json |
|
"s01e01-001196-001272": [ |
|
{"face_track_id": 0, "name": "carol", "frame": [1251, 1252, ...], "bbox": [[762.22, 257.18, 805.59, 309.45], [762.29, 256.34, 806.16, 309.51], ...]}, // face track 1 |
|
{"face_track_id": 1, "name": "monica", "frame": [frame 1, frame 2, ...], "bbox": [bbox 1, bbox 2, ...]}, // face track 2 |
|
] |
|
``` |
|
|
|
Each python dictionary in this example marks the track of a face. |
|
- "face_track_id" corresponds to the face track file name in `face_track_videos`. In this example, the face track for "carol" is `face_track_videos/s01e01/001196-001272/0.avi(.wav)`. |
|
- "frame" is a list of frame numbers in the turn. Each frame number >= start frame number and <= end frame number, |
|
- "bbox" is a list of bounding boxes (x1, y1, x2, y2). Each bounding box marks a face in its corresponding frame (e.g., the box [762.22, 257.18, 805.59, 309.45] of frame 1251 marks an appearence of a carol's face). |
|
|
|
|
|
## Citation |
|
If you use this work in your research, please cite: |
|
```bibtex |
|
@misc{wang2024friendsmmcdatasetmultimodalmultiparty, |
|
title={Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding}, |
|
author={Yueqian Wang and Xiaojun Meng and Yuxuan Wang and Jianxin Liang and Qun Liu and Dongyan Zhao}, |
|
year={2024}, |
|
eprint={2412.17295}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2412.17295}, |
|
} |
|
``` |