File size: 4,510 Bytes
2f23893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import json
import datasets
from pathlib import Path

_HOMEPAGE = 'https://cocodataset.org/'
_LICENSE = 'Creative Commons Attribution 4.0 License'
_DESCRIPTION = 'COCO is a large-scale object detection, segmentation, and captioning dataset.'
_CITATION = '''\
@article{cocodataset,
  author    = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  archivePrefix = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
'''


class COCOKeypointsConfig(datasets.BuilderConfig):
    '''Builder Config for coco2017'''

    def __init__(
        self, description, homepage,
        annotation_urls, **kwargs
    ):
        super(COCOKeypointsConfig, self).__init__(
            version=datasets.Version('1.0.0', ''),
            **kwargs
        )
        self.description = description
        self.homepage = homepage
        url = 'http://images.cocodataset.org/zips/'
        self.train_image_url = url + 'train2017.zip'
        self.val_image_url = url + 'val2017.zip'
        self.train_annotation_urls = annotation_urls['train']
        self.val_annotation_urls = annotation_urls['validation']


class COCOKeypoints(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        COCOKeypointsConfig(
            description=_DESCRIPTION,
            homepage=_HOMEPAGE,
            annotation_urls={
                'train': 'data/keypoints_train.zip',
                'validation': 'data/keypoints_validation.zip'
            },
        )
    ]

    def _info(self):
        features = datasets.Features({
            'image': datasets.Image(mode='RGB', decode=True, id=None),
            'bboxes': datasets.Sequence(
                feature=datasets.Sequence(
                    feature=datasets.Value(dtype='float32', id=None),
                    length=4, id=None
                ), length=-1, id=None
            ),
            'keypoints': datasets.Sequence(
                feature=datasets.Sequence(
                    feature=datasets.Sequence(
                        feature=datasets.Value(dtype='int32', id=None),
                    ), length=17, id=None
                ), length=-1, id=None
            )
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION
        )

    def _split_generators(self, dl_manager):
        train_image_path = dl_manager.download_and_extract(
            self.config.train_image_url
        )
        validation_image_path = dl_manager.download_and_extract(
            self.config.val_image_url
        )
        train_annotation_paths = dl_manager.download_and_extract(
            self.config.train_annotation_urls
        )
        val_annotation_paths = dl_manager.download_and_extract(
            self.config.val_annotation_urls
        )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    'image_path': f'{train_image_path}/train2017',
                    'annotation_path': f'{train_annotation_paths}/keypoints_train.jsonl'
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    'image_path': f'{validation_image_path}/val2017',
                    'annotation_path': f'{val_annotation_paths}/keypoints_validation.jsonl'
                }
            )
        ]

    def _generate_examples(self, image_path, annotation_path):
        idx = 0
        image_path = Path(image_path)
        with open(annotation_path, 'r', encoding='utf-8') as f:
            for line in f:
                obj = json.loads(line.strip())
                example = {
                    'image': str(image_path / obj['image']),
                    'bboxes': obj['bboxes'],
                    'keypoints': obj['keypoints']
                }
                yield idx, example
                idx += 1