|
---
|
|
license: cc-by-4.0
|
|
size_categories:
|
|
- n<1K
|
|
task_categories:
|
|
- object-detection
|
|
language:
|
|
- en
|
|
pretty_name: COCO Keypoints
|
|
---
|
|
|
|
# Dataset Card for "COCO Keypoints"
|
|
|
|
## Quick Start
|
|
### Usage
|
|
```python
|
|
>>> from datasets.load import load_dataset
|
|
|
|
>>> dataset = load_dataset('whyen-wang/coco_keypoints')
|
|
>>> example = dataset['train'][0]
|
|
>>> print(example)
|
|
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x360>,
|
|
'bboxes': [
|
|
[339.8800048828125, 22.15999984741211,
|
|
153.8800048828125, 300.7300109863281],
|
|
[471.6400146484375, 172.82000732421875,
|
|
35.91999816894531, 48.099998474121094]],
|
|
'keypoints': [[
|
|
[368, 61, 1], [369, 52, 2], [0, 0, 0], [382, 48, 2], [0, 0, 0],
|
|
[368, 84, 2], [435, 81, 2], [362, 125, 2], [446, 125, 2], [360, 153, 2],
|
|
[0, 0, 0], [397, 167, 1], [439, 166, 1], [369, 193, 2], [461, 234, 2],
|
|
[361, 246, 2], [474, 287, 2]
|
|
], [[...]]
|
|
]}
|
|
```
|
|
|
|
### Visualization
|
|
```python
|
|
>>> import cv2
|
|
>>> import numpy as np
|
|
>>> from PIL import Image
|
|
|
|
>>> def visualize(example):
|
|
image = np.array(example['image'])
|
|
bboxes = np.array(example['bboxes']).round().astype(int)
|
|
bboxes[:, 2:] += bboxes[:, :2]
|
|
keypoints = example['keypoints']
|
|
n = len(bboxes)
|
|
for i in range(n):
|
|
color = (255, 0, 0)
|
|
cv2.rectangle(image, bboxes[i, :2], bboxes[i, 2:], color, 2)
|
|
ks = keypoints[i]
|
|
for k in ks:
|
|
if k[-1] == 2:
|
|
cv2.circle(
|
|
image, k[:2], 5, (0, 255, 0), 1
|
|
)
|
|
return image
|
|
|
|
>>> Image.fromarray(visualize(example))
|
|
```
|
|
|
|
## Table of Contents
|
|
- [Table of Contents](#table-of-contents)
|
|
- [Dataset Description](#dataset-description)
|
|
- [Dataset Summary](#dataset-summary)
|
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
|
- [Languages](#languages)
|
|
- [Dataset Structure](#dataset-structure)
|
|
- [Data Instances](#data-instances)
|
|
- [Data Fields](#data-fields)
|
|
- [Data Splits](#data-splits)
|
|
- [Dataset Creation](#dataset-creation)
|
|
- [Curation Rationale](#curation-rationale)
|
|
- [Source Data](#source-data)
|
|
- [Annotations](#annotations)
|
|
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
|
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
|
- [Social Impact of Dataset](#social-impact-of-dataset)
|
|
- [Discussion of Biases](#discussion-of-biases)
|
|
- [Other Known Limitations](#other-known-limitations)
|
|
- [Additional Information](#additional-information)
|
|
- [Dataset Curators](#dataset-curators)
|
|
- [Licensing Information](#licensing-information)
|
|
- [Citation Information](#citation-information)
|
|
- [Contributions](#contributions)
|
|
|
|
## Dataset Description
|
|
|
|
- **Homepage:** https://cocodataset.org/
|
|
- **Repository:** None
|
|
- **Paper:** [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312)
|
|
- **Leaderboard:** [Papers with Code](https://paperswithcode.com/dataset/coco)
|
|
- **Point of Contact:** None
|
|
|
|
### Dataset Summary
|
|
|
|
COCO is a large-scale object detection, segmentation, and captioning dataset.
|
|
|
|
### Supported Tasks and Leaderboards
|
|
|
|
[Object Detection](https://huggingface.co/tasks/object-detection)
|
|
|
|
### Languages
|
|
|
|
en
|
|
|
|
## Dataset Structure
|
|
|
|
### Data Instances
|
|
|
|
An example looks as follows.
|
|
|
|
```
|
|
{
|
|
"image": PIL.Image(mode="RGB"),
|
|
"bboxes": [
|
|
[339.8800048828125, 22.15999984741211,
|
|
153.8800048828125, 300.7300109863281],
|
|
[471.6400146484375, 172.82000732421875,
|
|
35.91999816894531, 48.099998474121094]],
|
|
"keypoints": [[
|
|
[368, 61, 1], [369, 52, 2], [0, 0, 0], [382, 48, 2], [0, 0, 0],
|
|
[368, 84, 2], [435, 81, 2], [362, 125, 2], [446, 125, 2], [360, 153, 2],
|
|
[0, 0, 0], [397, 167, 1], [439, 166, 1], [369, 193, 2], [461, 234, 2],
|
|
[361, 246, 2], [474, 287, 2]
|
|
], [[...]]
|
|
]
|
|
}
|
|
```
|
|
|
|
### Data Fields
|
|
|
|
[More Information Needed]
|
|
|
|
### Data Splits
|
|
|
|
| name | train | validation |
|
|
| ------- | -----: | ---------: |
|
|
| default | 64,115 | 2,693 |
|
|
|
|
## Dataset Creation
|
|
|
|
### Curation Rationale
|
|
|
|
[More Information Needed]
|
|
|
|
### Source Data
|
|
|
|
#### Initial Data Collection and Normalization
|
|
|
|
[More Information Needed]
|
|
|
|
#### Who are the source language producers?
|
|
|
|
[More Information Needed]
|
|
|
|
### Annotations
|
|
|
|
#### Annotation process
|
|
|
|
[More Information Needed]
|
|
|
|
#### Who are the annotators?
|
|
|
|
[More Information Needed]
|
|
|
|
### Personal and Sensitive Information
|
|
|
|
[More Information Needed]
|
|
|
|
## Considerations for Using the Data
|
|
|
|
### Social Impact of Dataset
|
|
|
|
[More Information Needed]
|
|
|
|
### Discussion of Biases
|
|
|
|
[More Information Needed]
|
|
|
|
### Other Known Limitations
|
|
|
|
[More Information Needed]
|
|
|
|
## Additional Information
|
|
|
|
### Dataset Curators
|
|
|
|
[More Information Needed]
|
|
|
|
### Licensing Information
|
|
|
|
Creative Commons Attribution 4.0 License
|
|
|
|
### Citation Information
|
|
|
|
```
|
|
@article{cocodataset,
|
|
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
|
|
title = {Microsoft {COCO:} Common Objects in Context},
|
|
journal = {CoRR},
|
|
volume = {abs/1405.0312},
|
|
year = {2014},
|
|
url = {http://arxiv.org/abs/1405.0312},
|
|
archivePrefix = {arXiv},
|
|
eprint = {1405.0312},
|
|
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
|
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
}
|
|
```
|
|
|
|
### Contributions
|
|
|
|
Thanks to [@github-whyen-wang](https://github.com/whyen-wang) for adding this dataset.
|
|
|