coco_keypoints / README.md
whyen-wang's picture
update
fae9fa7
---
license: cc-by-4.0
size_categories:
- n<1K
task_categories:
- object-detection
language:
- en
pretty_name: COCO Keypoints
---
# Dataset Card for "COCO Keypoints"
## Quick Start
### Usage
```python
>>> from datasets.load import load_dataset
>>> dataset = load_dataset('whyen-wang/coco_keypoints')
>>> example = dataset['train'][0]
>>> print(example)
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x360>,
'bboxes': [
[339.8800048828125, 22.15999984741211,
153.8800048828125, 300.7300109863281],
[471.6400146484375, 172.82000732421875,
35.91999816894531, 48.099998474121094]],
'keypoints': [[
[368, 61, 1], [369, 52, 2], [0, 0, 0], [382, 48, 2], [0, 0, 0],
[368, 84, 2], [435, 81, 2], [362, 125, 2], [446, 125, 2], [360, 153, 2],
[0, 0, 0], [397, 167, 1], [439, 166, 1], [369, 193, 2], [461, 234, 2],
[361, 246, 2], [474, 287, 2]
], [[...]]
]}
```
### Visualization
```python
>>> import cv2
>>> import numpy as np
>>> from PIL import Image
>>> def visualize(example):
image = np.array(example['image'])
bboxes = np.array(example['bboxes']).round().astype(int)
bboxes[:, 2:] += bboxes[:, :2]
keypoints = example['keypoints']
n = len(bboxes)
for i in range(n):
color = (255, 0, 0)
cv2.rectangle(image, bboxes[i, :2], bboxes[i, 2:], color, 2)
ks = keypoints[i]
for k in ks:
if k[-1] == 2:
cv2.circle(
image, k[:2], 5, (0, 255, 0), 1
)
return image
>>> Image.fromarray(visualize(example))
```
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://cocodataset.org/
- **Repository:** None
- **Paper:** [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312)
- **Leaderboard:** [Papers with Code](https://paperswithcode.com/dataset/coco)
- **Point of Contact:** None
### Dataset Summary
COCO is a large-scale object detection, segmentation, and captioning dataset.
### Supported Tasks and Leaderboards
[Object Detection](https://huggingface.co/tasks/object-detection)
### Languages
en
## Dataset Structure
### Data Instances
An example looks as follows.
```
{
"image": PIL.Image(mode="RGB"),
"bboxes": [
[339.8800048828125, 22.15999984741211,
153.8800048828125, 300.7300109863281],
[471.6400146484375, 172.82000732421875,
35.91999816894531, 48.099998474121094]],
"keypoints": [[
[368, 61, 1], [369, 52, 2], [0, 0, 0], [382, 48, 2], [0, 0, 0],
[368, 84, 2], [435, 81, 2], [362, 125, 2], [446, 125, 2], [360, 153, 2],
[0, 0, 0], [397, 167, 1], [439, 166, 1], [369, 193, 2], [461, 234, 2],
[361, 246, 2], [474, 287, 2]
], [[...]]
]
}
```
### Data Fields
[More Information Needed]
### Data Splits
| name | train | validation |
| ------- | -----: | ---------: |
| default | 64,115 | 2,693 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution 4.0 License
### Citation Information
```
@article{cocodataset,
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@github-whyen-wang](https://github.com/whyen-wang) for adding this dataset.