x_g85_fn_dataset / README.md
Adam-Al-Rahman's picture
update: readme to add labels semantics.
c2a4e7c verified
metadata
license: mit
language:
  - en
tags:
  - nlp
  - ml
  - dataset
  - fake-news
  - classification
pretty_name: x_g85_fn_dataset
configs:
  - config_name: processed
    data_files:
      - split: train
        path: fn_train.csv
      - split: test
        path: fn_test.csv
      - split: valid
        path: fn_valid.csv
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int32

X_G85 Fake News Dataset

It is a preprocessed dataset that is used to build X_G85 ML Models. The collection of fake news that are collect from the following datasets

Labels

0: Fake News
1: Real News

How to stream dataset & use as pandas dataframe

By streaming the dataset, it won't download on your host computer. Read more here hugging face streaming dataset.

import pandas as pd
from datasets import load_dataset

Note: The following operation may take some time depending on the size of the dataset.

dataset = load_dataset("x-g85/x_g85_fn_dataset", streaming=True)

train = pd.DataFrame(dataset["train"])
valid = pd.DataFrame(dataset["valid"])
test = pd.DataFrame(dataset["test"])
X_train = train["text"]
y_train = train["label"]

X_valid = valid["text"]
y_vaild = valid["label"]

X_test = test["text"]
y_test = test["label"]

Credit

We have used the following datasets to create our own datasets and train models.