title
stringlengths
7
246
abstract
stringlengths
6
3.31k
A Geometric Approach to Sample Compression
The Sample Compression Conjecture of Littlestone & Warmuth has remained unsolved for over two decades. This paper presents a systematic geometric investigation of the compression of finite maximum concept classes. Simple arrangements of hyperplanes in Hyperbolic space, and Piecewise-Linear hyperplane arrangements, are shown to represent maximum classes, generalizing the corresponding Euclidean result. A main result is that PL arrangements can be swept by a moving hyperplane to unlabeled d-compress any finite maximum class, forming a peeling scheme as conjectured by Kuzmin & Warmuth. A corollary is that some d-maximal classes cannot be embedded into any maximum class of VC dimension d+k, for any constant k. The construction of the PL sweeping involves Pachner moves on the one-inclusion graph, corresponding to moves of a hyperplane across the intersection of d other hyperplanes. This extends the well known Pachner moves for triangulations to cubical complexes.
Likelihood-based semi-supervised model selection with applications to speech processing
In conventional supervised pattern recognition tasks, model selection is typically accomplished by minimizing the classification error rate on a set of so-called development data, subject to ground-truth labeling by human experts or some other means. In the context of speech processing systems and other large-scale practical applications, however, such labeled development data are typically costly and difficult to obtain. This article proposes an alternative semi-supervised framework for likelihood-based model selection that leverages unlabeled data by using trained classifiers representing each model to automatically generate putative labels. The errors that result from this automatic labeling are shown to be amenable to results from robust statistics, which in turn provide for minimax-optimal censored likelihood ratio tests that recover the nonparametric sign test as a limiting case. This approach is then validated experimentally using a state-of-the-art automatic speech recognition system to select between candidate word pronunciations using unlabeled speech data that only potentially contain instances of the words under test. Results provide supporting evidence for the utility of this approach, and suggest that it may also find use in other applications of machine learning.
Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation
We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale $\ell_1$-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.
Towards Industrialized Conception and Production of Serious Games
Serious Games (SGs) have experienced a tremendous outburst these last years. Video game companies have been producing fun, user-friendly SGs, but their educational value has yet to be proven. Meanwhile, cognition research scientist have been developing SGs in such a way as to guarantee an educational gain, but the fun and attractive characteristics featured often would not meet the public's expectations. The ideal SG must combine these two aspects while still being economically viable. In this article, we propose a production chain model to efficiently conceive and produce SGs that are certified for their educational gain and fun qualities. Each step of this chain will be described along with the human actors, the tools and the documents that intervene.
Statistical exponential families: A digest with flash cards
This document describes concisely the ubiquitous class of exponential family distributions met in statistics. The first part recalls definitions and summarizes main properties and duality with Bregman divergences (all proofs are skipped). The second part lists decompositions and related formula of common exponential family distributions. We recall the Fisher-Rao-Riemannian geometries and the dual affine connection information geometries of statistical manifolds. It is intended to maintain and update this document and catalog by adding new distribution items.
A Bayesian Rule for Adaptive Control based on Causal Interventions
Explaining adaptive behavior is a central problem in artificial intelligence research. Here we formalize adaptive agents as mixture distributions over sequences of inputs and outputs (I/O). Each distribution of the mixture constitutes a `possible world', but the agent does not know which of the possible worlds it is actually facing. The problem is to adapt the I/O stream in a way that is compatible with the true world. A natural measure of adaptation can be obtained by the Kullback-Leibler (KL) divergence between the I/O distribution of the true world and the I/O distribution expected by the agent that is uncertain about possible worlds. In the case of pure input streams, the Bayesian mixture provides a well-known solution for this problem. We show, however, that in the case of I/O streams this solution breaks down, because outputs are issued by the agent itself and require a different probabilistic syntax as provided by intervention calculus. Based on this calculus, we obtain a Bayesian control rule that allows modeling adaptive behavior with mixture distributions over I/O streams. This rule might allow for a novel approach to adaptive control based on a minimum KL-principle.
Maximin affinity learning of image segmentation
Images can be segmented by first using a classifier to predict an affinity graph that reflects the degree to which image pixels must be grouped together and then partitioning the graph to yield a segmentation. Machine learning has been applied to the affinity classifier to produce affinity graphs that are good in the sense of minimizing edge misclassification rates. However, this error measure is only indirectly related to the quality of segmentations produced by ultimately partitioning the affinity graph. We present the first machine learning algorithm for training a classifier to produce affinity graphs that are good in the sense of producing segmentations that directly minimize the Rand index, a well known segmentation performance measure. The Rand index measures segmentation performance by quantifying the classification of the connectivity of image pixel pairs after segmentation. By using the simple graph partitioning algorithm of finding the connected components of the thresholded affinity graph, we are able to train an affinity classifier to directly minimize the Rand index of segmentations resulting from the graph partitioning. Our learning algorithm corresponds to the learning of maximin affinities between image pixel pairs, which are predictive of the pixel-pair connectivity.
Hierarchies in Dictionary Definition Space
A dictionary defines words in terms of other words. Definitions can tell you the meanings of words you don't know, but only if you know the meanings of the defining words. How many words do you need to know (and which ones) in order to be able to learn all the rest from definitions? We reduced dictionaries to their "grounding kernels" (GKs), about 10% of the dictionary, from which all the other words could be defined. The GK words turned out to have psycholinguistic correlates: they were learned at an earlier age and more concrete than the rest of the dictionary. But one can compress still more: the GK turns out to have internal structure, with a strongly connected "kernel core" (KC) and a surrounding layer, from which a hierarchy of definitional distances can be derived, all the way out to the periphery of the full dictionary. These definitional distances, too, are correlated with psycholinguistic variables (age of acquisition, concreteness, imageability, oral and written frequency) and hence perhaps with the "mental lexicon" in each of our heads.
Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning
Several recent studies in privacy-preserving learning have considered the trade-off between utility or risk and the level of differential privacy guaranteed by mechanisms for statistical query processing. In this paper we study this trade-off in private Support Vector Machine (SVM) learning. We present two efficient mechanisms, one for the case of finite-dimensional feature mappings and one for potentially infinite-dimensional feature mappings with translation-invariant kernels. For the case of translation-invariant kernels, the proposed mechanism minimizes regularized empirical risk in a random Reproducing Kernel Hilbert Space whose kernel uniformly approximates the desired kernel with high probability. This technique, borrowed from large-scale learning, allows the mechanism to respond with a finite encoding of the classifier, even when the function class is of infinite VC dimension. Differential privacy is established using a proof technique from algorithmic stability. Utility--the mechanism's response function is pointwise epsilon-close to non-private SVM with probability 1-delta--is proven by appealing to the smoothness of regularized empirical risk minimization with respect to small perturbations to the feature mapping. We conclude with a lower bound on the optimal differential privacy of the SVM. This negative result states that for any delta, no mechanism can be simultaneously (epsilon,delta)-useful and beta-differentially private for small epsilon and small beta.
Differentially Private Empirical Risk Minimization
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the $\epsilon$-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.
Learning Mixtures of Gaussians using the k-means Algorithm
One of the most popular algorithms for clustering in Euclidean space is the $k$-means algorithm; $k$-means is difficult to analyze mathematically, and few theoretical guarantees are known about it, particularly when the data is {\em well-clustered}. In this paper, we attempt to fill this gap in the literature by analyzing the behavior of $k$-means on well-clustered data. In particular, we study the case when each cluster is distributed as a different Gaussian -- or, in other words, when the input comes from a mixture of Gaussians. We analyze three aspects of the $k$-means algorithm under this assumption. First, we show that when the input comes from a mixture of two spherical Gaussians, a variant of the 2-means algorithm successfully isolates the subspace containing the means of the mixture components. Second, we show an exact expression for the convergence of our variant of the 2-means algorithm, when the input is a very large number of samples from a mixture of spherical Gaussians. Our analysis does not require any lower bound on the separation between the mixture components. Finally, we study the sample requirement of $k$-means; for a mixture of 2 spherical Gaussians, we show an upper bound on the number of samples required by a variant of 2-means to get close to the true solution. The sample requirement grows with increasing dimensionality of the data, and decreasing separation between the means of the Gaussians. To match our upper bound, we show an information-theoretic lower bound on any algorithm that learns mixtures of two spherical Gaussians; our lower bound indicates that in the case when the overlap between the probability masses of the two distributions is small, the sample requirement of $k$-means is {\em near-optimal}.
Isometric Multi-Manifolds Learning
Isometric feature mapping (Isomap) is a promising manifold learning method. However, Isomap fails to work on data which distribute on clusters in a single manifold or manifolds. Many works have been done on extending Isomap to multi-manifolds learning. In this paper, we first proposed a new multi-manifolds learning algorithm (M-Isomap) with help of a general procedure. The new algorithm preserves intra-manifold geodesics and multiple inter-manifolds edges precisely. Compared with previous methods, this algorithm can isometrically learn data distributed on several manifolds. Secondly, the original multi-cluster manifold learning algorithm first proposed in \cite{DCIsomap} and called D-C Isomap has been revised so that the revised D-C Isomap can learn multi-manifolds data. Finally, the features and effectiveness of the proposed multi-manifolds learning algorithms are demonstrated and compared through experiments.
Training a Large Scale Classifier with the Quantum Adiabatic Algorithm
In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.
Designing Kernel Scheme for Classifiers Fusion
In this paper, we propose a special fusion method for combining ensembles of base classifiers utilizing new neural networks in order to improve overall efficiency of classification. While ensembles are designed such that each classifier is trained independently while the decision fusion is performed as a final procedure, in this method, we would be interested in making the fusion process more adaptive and efficient. This new combiner, called Neural Network Kernel Least Mean Square1, attempts to fuse outputs of the ensembles of classifiers. The proposed Neural Network has some special properties such as Kernel abilities,Least Mean Square features, easy learning over variants of patterns and traditional neuron capabilities. Neural Network Kernel Least Mean Square is a special neuron which is trained with Kernel Least Mean Square properties. This new neuron is used as a classifiers combiner to fuse outputs of base neural network classifiers. Performance of this method is analyzed and compared with other fusion methods. The analysis represents higher performance of our new method as opposed to others.
Biogeography based Satellite Image Classification
Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and the modified algorithm is used to classify the satellite image of a given region. The results indicate that highly accurate land cover features can be extracted effectively when the proposed algorithm is used.
An ensemble approach for feature selection of Cyber Attack Dataset
Feature selection is an indispensable preprocessing step when mining huge datasets that can significantly improve the overall system performance. Therefore in this paper we focus on a hybrid approach of feature selection. This method falls into two phases. The filter phase select the features with highest information gain and guides the initialization of search process for wrapper phase whose output the final feature subset. The final feature subsets are passed through the Knearest neighbor classifier for classification of attacks. The effectiveness of this algorithm is demonstrated on DARPA KDDCUP99 cyber attack dataset.
How to Explain Individual Classification Decisions
After building a classifier with modern tools of machine learning we typically have a black box at hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the most likely label of a given unseen data point. However, most methods will provide no answer why the model predicted the particular label for a single instance and what features were most influential for that particular instance. The only method that is currently able to provide such explanations are decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to explain the decisions of any classification method.
A Learning-Based Approach to Reactive Security
Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender's strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker's incentives and knowledge.
Delay-Optimal Power and Subcarrier Allocation for OFDMA Systems via Stochastic Approximation
In this paper, we consider delay-optimal power and subcarrier allocation design for OFDMA systems with $N_F$ subcarriers, $K$ mobiles and one base station. There are $K$ queues at the base station for the downlink traffic to the $K$ mobiles with heterogeneous packet arrivals and delay requirements. We shall model the problem as a $K$-dimensional infinite horizon average reward Markov Decision Problem (MDP) where the control actions are assumed to be a function of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). This problem is challenging because it corresponds to a stochastic Network Utility Maximization (NUM) problem where general solution is still unknown. We propose an {\em online stochastic value iteration} solution using {\em stochastic approximation}. The proposed power control algorithm, which is a function of both the CSI and the QSI, takes the form of multi-level water-filling. We prove that under two mild conditions in Theorem 1 (One is the stepsize condition. The other is the condition on accessibility of the Markov Chain, which can be easily satisfied in most of the cases we are interested.), the proposed solution converges to the optimal solution almost surely (with probability 1) and the proposed framework offers a possible solution to the general stochastic NUM problem. By exploiting the birth-death structure of the queue dynamics, we obtain a reduced complexity decomposed solution with linear $\mathcal{O}(KN_F)$ complexity and $\mathcal{O}(K)$ memory requirement.
Association Rule Pruning based on Interestingness Measures with Clustering
Association rule mining plays vital part in knowledge mining. The difficult task is discovering knowledge or useful rules from the large number of rules generated for reduced support. For pruning or grouping rules, several techniques are used such as rule structure cover methods, informative cover methods, rule clustering, etc. Another way of selecting association rules is based on interestingness measures such as support, confidence, correlation, and so on. In this paper, we study how rule clusters of the pattern Xi - Y are distributed over different interestingness measures.
Gesture Recognition with a Focus on Important Actions by Using a Path Searching Method in Weighted Graph
This paper proposes a method of gesture recognition with a focus on important actions for distinguishing similar gestures. The method generates a partial action sequence by using optical flow images, expresses the sequence in the eigenspace, and checks the feature vector sequence by applying an optimum path-searching method of weighted graph to focus the important actions. Also presented are the results of an experiment on the recognition of similar sign language words.
Synthesis of supervised classification algorithm using intelligent and statistical tools
A fundamental task in detecting foreground objects in both static and dynamic scenes is to take the best choice of color system representation and the efficient technique for background modeling. We propose in this paper a non-parametric algorithm dedicated to segment and to detect objects in color images issued from a football sports meeting. Indeed segmentation by pixel concern many applications and revealed how the method is robust to detect objects, even in presence of strong shadows and highlights. In the other hand to refine their playing strategy such as in football, handball, volley ball, Rugby..., the coach need to have a maximum of technical-tactics information about the on-going of the game and the players. We propose in this paper a range of algorithms allowing the resolution of many problems appearing in the automated process of team identification, where each player is affected to his corresponding team relying on visual data. The developed system was tested on a match of the Tunisian national competition. This work is prominent for many next computer vision studies as it's detailed in this study.
Early Detection of Breast Cancer using SVM Classifier Technique
This paper presents a tumor detection algorithm from mammogram. The proposed system focuses on the solution of two problems. One is how to detect tumors as suspicious regions with a very weak contrast to their background and another is how to extract features which categorize tumors. The tumor detection method follows the scheme of (a) mammogram enhancement. (b) The segmentation of the tumor area. (c) The extraction of features from the segmented tumor area. (d) The use of SVM classifier. The enhancement can be defined as conversion of the image quality to a better and more understandable level. The mammogram enhancement procedure includes filtering, top hat operation, DWT. Then the contrast stretching is used to increase the contrast of the image. The segmentation of mammogram images has been playing an important role to improve the detection and diagnosis of breast cancer. The most common segmentation method used is thresholding. The features are extracted from the segmented breast area. Next stage include, which classifies the regions using the SVM classifier. The method was tested on 75 mammographic images, from the mini-MIAS database. The methodology achieved a sensitivity of 88.75%.
Closing the Learning-Planning Loop with Predictive State Representations
A central problem in artificial intelligence is that of planning to maximize future reward under uncertainty in a partially observable environment. In this paper we propose and demonstrate a novel algorithm which accurately learns a model of such an environment directly from sequences of action-observation pairs. We then close the loop from observations to actions by planning in the learned model and recovering a policy which is near-optimal in the original environment. Specifically, we present an efficient and statistically consistent spectral algorithm for learning the parameters of a Predictive State Representation (PSR). We demonstrate the algorithm by learning a model of a simulated high-dimensional, vision-based mobile robot planning task, and then perform approximate point-based planning in the learned PSR. Analysis of our results shows that the algorithm learns a state space which efficiently captures the essential features of the environment. This representation allows accurate prediction with a small number of parameters, and enables successful and efficient planning.
The Gaussian Surface Area and Noise Sensitivity of Degree-$d$ Polynomials
We provide asymptotically sharp bounds for the Gaussian surface area and the Gaussian noise sensitivity of polynomial threshold functions. In particular we show that if $f$ is a degree-$d$ polynomial threshold function, then its Gaussian sensitivity at noise rate $\epsilon$ is less than some quantity asymptotic to $\frac{d\sqrt{2\epsilon}}{\pi}$ and the Gaussian surface area is at most $\frac{d}{\sqrt{2\pi}}$. Furthermore these bounds are asymptotically tight as $\epsilon\to 0$ and $f$ the threshold function of a product of $d$ distinct homogeneous linear functions.
Intrusion Detection In Mobile Ad Hoc Networks Using GA Based Feature Selection
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years because of the rapid proliferation of wireless devices. MANETs are highly vulnerable to attacks due to the open medium, dynamically changing network topology and lack of centralized monitoring point. It is important to search new architecture and mechanisms to protect the wireless networks and mobile computing application. IDS analyze the network activities by means of audit data and use patterns of well-known attacks or normal profile to detect potential attacks. There are two methods to analyze: misuse detection and anomaly detection. Misuse detection is not effective against unknown attacks and therefore, anomaly detection method is used. In this approach, the audit data is collected from each mobile node after simulating the attack and compared with the normal behavior of the system. If there is any deviation from normal behavior then the event is considered as an attack. Some of the features of collected audit data may be redundant or contribute little to the detection process. So it is essential to select the important features to increase the detection rate. This paper focuses on implementing two feature selection methods namely, markov blanket discovery and genetic algorithm. In genetic algorithm, bayesian network is constructed over the collected features and fitness function is calculated. Based on the fitness value the features are selected. Markov blanket discovery also uses bayesian network and the features are selected depending on the minimum description length. During the evaluation phase, the performances of both approaches are compared based on detection rate and false alarm rate.
Performance Analysis of AIM-K-means & K-means in Quality Cluster Generation
Among all the partition based clustering algorithms K-means is the most popular and well known method. It generally shows impressive results even in considerably large data sets. The computational complexity of K-means does not suffer from the size of the data set. The main disadvantage faced in performing this clustering is that the selection of initial means. If the user does not have adequate knowledge about the data set, it may lead to erroneous results. The algorithm Automatic Initialization of Means (AIM), which is an extension to K-means, has been proposed to overcome the problem of initial mean generation. In this paper an attempt has been made to compare the performance of the algorithms through implementation
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multi-armed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches.
Learning to Predict Combinatorial Structures
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.
On Finding Predictors for Arbitrary Families of Processes
The problem is sequence prediction in the following setting. A sequence $x_1,...,x_n,...$ of discrete-valued observations is generated according to some unknown probabilistic law (measure) $\mu$. After observing each outcome, it is required to give the conditional probabilities of the next observation. The measure $\mu$ belongs to an arbitrary but known class $C$ of stochastic process measures. We are interested in predictors $\rho$ whose conditional probabilities converge (in some sense) to the "true" $\mu$-conditional probabilities if any $\mu\in C$ is chosen to generate the sequence. The contribution of this work is in characterizing the families $C$ for which such predictors exist, and in providing a specific and simple form in which to look for a solution. We show that if any predictor works, then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find several sufficient and necessary conditions for the existence of a predictor, in terms of topological characterizations of the family $C$, as well as in terms of local behaviour of the measures in $C$, which in some cases lead to procedures for constructing such predictors. It should be emphasized that the framework is completely general: the stochastic processes considered are not required to be i.i.d., stationary, or to belong to any parametric or countable family.
An Invariance Principle for Polytopes
Let X be randomly chosen from {-1,1}^n, and let Y be randomly chosen from the standard spherical Gaussian on R^n. For any (possibly unbounded) polytope P formed by the intersection of k halfspaces, we prove that |Pr [X belongs to P] - Pr [Y belongs to P]| < log^{8/5}k * Delta, where Delta is a parameter that is small for polytopes formed by the intersection of "regular" halfspaces (i.e., halfspaces with low influence). The novelty of our invariance principle is the polylogarithmic dependence on k. Previously, only bounds that were at least linear in k were known. We give two important applications of our main result: (1) A polylogarithmic in k bound on the Boolean noise sensitivity of intersections of k "regular" halfspaces (previous work gave bounds linear in k). (2) A pseudorandom generator (PRG) with seed length O((log n)*poly(log k,1/delta)) that delta-fools all polytopes with k faces with respect to the Gaussian distribution. We also obtain PRGs with similar parameters that fool polytopes formed by intersection of regular halfspaces over the hypercube. Using our PRG constructions, we obtain the first deterministic quasi-polynomial time algorithms for approximately counting the number of solutions to a broad class of integer programs, including dense covering problems and contingency tables.
Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning
There has been a lot of recent work on Bayesian methods for reinforcement learning exhibiting near-optimal online performance. The main obstacle facing such methods is that in most problems of interest, the optimal solution involves planning in an infinitely large tree. However, it is possible to obtain stochastic lower and upper bounds on the value of each tree node. This enables us to use stochastic branch and bound algorithms to search the tree efficiently. This paper proposes two such algorithms and examines their complexity in this setting.
Ranking relations using analogies in biological and information networks
Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects $\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}$, measures how well other pairs A:B fit in with the set $\mathbf{S}$. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in $\mathbf{S}$? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.
A survey of statistical network models
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.
Optimal Query Complexity for Reconstructing Hypergraphs
In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let $G$ be a weighted hidden hypergraph of constant rank with n vertices and $m$ hyperedges. For any $m$ there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O(\frac{m\log n}{\log m}) $$ additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008]. When the weights of the hypergraph are integers that are less than $O(poly(n^d/m))$ where $d$ is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O(\frac{m\log \frac{n^d}{m}}{\log m}). $$ additive queries. Using the information theoretic bound the above query complexities are tight.
Comparing Distributions and Shapes using the Kernel Distance
Starting with a similarity function between objects, it is possible to define a distance metric on pairs of objects, and more generally on probability distributions over them. These distance metrics have a deep basis in functional analysis, measure theory and geometric measure theory, and have a rich structure that includes an isometric embedding into a (possibly infinite dimensional) Hilbert space. They have recently been applied to numerous problems in machine learning and shape analysis. In this paper, we provide the first algorithmic analysis of these distance metrics. Our main contributions are as follows: (i) We present fast approximation algorithms for computing the kernel distance between two point sets P and Q that runs in near-linear time in the size of (P cup Q) (note that an explicit calculation would take quadratic time). (ii) We present polynomial-time algorithms for approximately minimizing the kernel distance under rigid transformation; they run in time O(n + poly(1/epsilon, log n)). (iii) We provide several general techniques for reducing complex objects to convenient sparse representations (specifically to point sets or sets of points sets) which approximately preserve the kernel distance. In particular, this allows us to reduce problems of computing the kernel distance between various types of objects such as curves, surfaces, and distributions to computing the kernel distance between point sets. These take advantage of the reproducing kernel Hilbert space and a new relation linking binary range spaces to continuous range spaces with bounded fat-shattering dimension.
Inference of global clusters from locally distributed data
We consider the problem of analyzing the heterogeneity of clustering distributions for multiple groups of observed data, each of which is indexed by a covariate value, and inferring global clusters arising from observations aggregated over the covariate domain. We propose a novel Bayesian nonparametric method reposing on the formalism of spatial modeling and a nested hierarchy of Dirichlet processes. We provide an analysis of the model properties, relating and contrasting the notions of local and global clusters. We also provide an efficient inference algorithm, and demonstrate the utility of our method in several data examples, including the problem of object tracking and a global clustering analysis of functional data where the functional identity information is not available.
Vandalism Detection in Wikipedia: a Bag-of-Words Classifier Approach
A bag-of-words based probabilistic classifier is trained using regularized logistic regression to detect vandalism in the English Wikipedia. Isotonic regression is used to calibrate the class membership probabilities. Learning curve, reliability, ROC, and cost analysis are performed.
Linear Probability Forecasting
Multi-class classification is one of the most important tasks in machine learning. In this paper we consider two online multi-class classification problems: classification by a linear model and by a kernelized model. The quality of predictions is measured by the Brier loss function. We suggest two computationally efficient algorithms to work with these problems and prove theoretical guarantees on their losses. We kernelize one of the algorithms and prove theoretical guarantees on its loss. We perform experiments and compare our algorithms with logistic regression.
Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning
Knowing the largest rate at which data can be sent on an end-to-end path such that the egress rate is equal to the ingress rate with high probability can be very practical when choosing transmission rates in video streaming or selecting peers in peer-to-peer applications. We introduce probabilistic available bandwidth, which is defined in terms of ingress rates and egress rates of traffic on a path, rather than in terms of capacity and utilization of the constituent links of the path like the standard available bandwidth metric. In this paper, we describe a distributed algorithm, based on a probabilistic graphical model and Bayesian active learning, for simultaneously estimating the probabilistic available bandwidth of multiple paths through a network. Our procedure exploits the fact that each packet train provides information not only about the path it traverses, but also about any path that shares a link with the monitored path. Simulations and PlanetLab experiments indicate that this process can dramatically reduce the number of probes required to generate accurate estimates.
An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost
This empirical study is mainly devoted to comparing four tree-based boosting algorithms: mart, abc-mart, robust logitboost, and abc-logitboost, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning. In terms of the empirical classification errors, our experiment results demonstrate: 1. Abc-mart considerably improves mart. 2. Abc-logitboost considerably improves (robust) logitboost. 3. Robust) logitboost} considerably improves mart on most datasets. 4. Abc-logitboost considerably improves abc-mart on most datasets. 5. These four boosting algorithms (especially abc-logitboost) outperform SVM on many datasets. 6. Compared to the best deep learning methods, these four boosting algorithms (especially abc-logitboost) are competitive.
An Unsupervised Algorithm For Learning Lie Group Transformations
We present several theoretical contributions which allow Lie groups to be fit to high dimensional datasets. Transformation operators are represented in their eigen-basis, reducing the computational complexity of parameter estimation to that of training a linear transformation model. A transformation specific "blurring" operator is introduced that allows inference to escape local minima via a smoothing of the transformation space. A penalty on traversed manifold distance is added which encourages the discovery of sparse, minimal distance, transformations between states. Both learning and inference are demonstrated using these methods for the full set of affine transformations on natural image patches. Transformation operators are then trained on natural video sequences. It is shown that the learned video transformations provide a better description of inter-frame differences than the standard motion model based on rigid translation.
Measuring Latent Causal Structure
Discovering latent representations of the observed world has become increasingly more relevant in data analysis. Much of the effort concentrates on building latent variables which can be used in prediction problems, such as classification and regression. A related goal of learning latent structure from data is that of identifying which hidden common causes generate the observations, such as in applications that require predicting the effect of policies. This will be the main problem tackled in our contribution: given a dataset of indicators assumed to be generated by unknown and unmeasured common causes, we wish to discover which hidden common causes are those, and how they generate our data. This is possible under the assumption that observed variables are linear functions of the latent causes with additive noise. Previous results in the literature present solutions for the case where each observed variable is a noisy function of a single latent variable. We show how to extend the existing results for some cases where observed variables measure more than one latent variable.
An Explicit Nonlinear Mapping for Manifold Learning
Manifold learning is a hot research topic in the field of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there is no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the first time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of Locally Linear Embedding (LLE) and derive an explicit nonlinear manifold learning algorithm, named Neighborhood Preserving Polynomial Embedding (NPPE). Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work.
Kernel machines with two layers and multiple kernel learning
In this paper, the framework of kernel machines with two layers is introduced, generalizing classical kernel methods. The new learning methodology provide a formal connection between computational architectures with multiple layers and the theme of kernel learning in standard regularization methods. First, a representer theorem for two-layer networks is presented, showing that finite linear combinations of kernels on each layer are optimal architectures whenever the corresponding functions solve suitable variational problems in reproducing kernel Hilbert spaces (RKHS). The input-output map expressed by these architectures turns out to be equivalent to a suitable single-layer kernel machines in which the kernel function is also learned from the data. Recently, the so-called multiple kernel learning methods have attracted considerable attention in the machine learning literature. In this paper, multiple kernel learning methods are shown to be specific cases of kernel machines with two layers in which the second layer is linear. Finally, a simple and effective multiple kernel learning method called RLS2 (regularized least squares with two layers) is introduced, and his performances on several learning problems are extensively analyzed. An open source MATLAB toolbox to train and validate RLS2 models with a Graphic User Interface is available.
A Monte Carlo Algorithm for Universally Optimal Bayesian Sequence Prediction and Planning
The aim of this work is to address the question of whether we can in principle design rational decision-making agents or artificial intelligences embedded in computable physics such that their decisions are optimal in reasonable mathematical senses. Recent developments in rare event probability estimation, recursive bayesian inference, neural networks, and probabilistic planning are sufficient to explicitly approximate reinforcement learners of the AIXI style with non-trivial model classes (here, the class of resource-bounded Turing machines). Consideration of the effects of resource limitations in a concrete implementation leads to insights about possible architectures for learning systems using optimal decision makers as components.
Asymptotic Learning Curve and Renormalizable Condition in Statistical Learning Theory
Bayes statistics and statistical physics have the common mathematical structure, where the log likelihood function corresponds to the random Hamiltonian. Recently, it was discovered that the asymptotic learning curves in Bayes estimation are subject to a universal law, even if the log likelihood function can not be approximated by any quadratic form. However, it is left unknown what mathematical property ensures such a universal law. In this paper, we define a renormalizable condition of the statistical estimation problem, and show that, under such a condition, the asymptotic learning curves are ensured to be subject to the universal law, even if the true distribution is unrealizable and singular for a statistical model. Also we study a nonrenormalizable case, in which the learning curves have the different asymptotic behaviors from the universal law.
Feature Extraction for Universal Hypothesis Testing via Rank-constrained Optimization
This paper concerns the construction of tests for universal hypothesis testing problems, in which the alternate hypothesis is poorly modeled and the observation space is large. The mismatched universal test is a feature-based technique for this purpose. In prior work it is shown that its finite-observation performance can be much better than the (optimal) Hoeffding test, and good performance depends crucially on the choice of features. The contributions of this paper include: 1) We obtain bounds on the number of \epsilon distinguishable distributions in an exponential family. 2) This motivates a new framework for feature extraction, cast as a rank-constrained optimization problem. 3) We obtain a gradient-based algorithm to solve the rank-constrained optimization problem and prove its local convergence.
The dynamics of message passing on dense graphs, with applications to compressed sensing
Approximate message passing algorithms proved to be extremely effective in reconstructing sparse signals from a small number of incoherent linear measurements. Extensive numerical experiments further showed that their dynamics is accurately tracked by a simple one-dimensional iteration termed state evolution. In this paper we provide the first rigorous foundation to state evolution. We prove that indeed it holds asymptotically in the large system limit for sensing matrices with independent and identically distributed gaussian entries. While our focus is on message passing algorithms for compressed sensing, the analysis extends beyond this setting, to a general class of algorithms on dense graphs. In this context, state evolution plays the role that density evolution has for sparse graphs. The proof technique is fundamentally different from the standard approach to density evolution, in that it copes with large number of short loops in the underlying factor graph. It relies instead on a conditioning technique recently developed by Erwin Bolthausen in the context of spin glass theory.
Role of Interestingness Measures in CAR Rule Ordering for Associative Classifier: An Empirical Approach
Associative Classifier is a novel technique which is the integration of Association Rule Mining and Classification. The difficult task in building Associative Classifier model is the selection of relevant rules from a large number of class association rules (CARs). A very popular method of ordering rules for selection is based on confidence, support and antecedent size (CSA). Other methods are based on hybrid orderings in which CSA method is combined with other measures. In the present work, we study the effect of using different interestingness measures of Association rules in CAR rule ordering and selection for associative classifier.
SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis
Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.
Probabilistic Approach to Neural Networks Computation Based on Quantum Probability Model Probabilistic Principal Subspace Analysis Example
In this paper, we introduce elements of probabilistic model that is suitable for modeling of learning algorithms in biologically plausible artificial neural networks framework. Model is based on two of the main concepts in quantum physics - a density matrix and the Born rule. As an example, we will show that proposed probabilistic interpretation is suitable for modeling of on-line learning algorithms for PSA, which are preferably realized by a parallel hardware based on very simple computational units. Proposed concept (model) can be used in the context of improving algorithm convergence speed, learning factor choice, or input signal scale robustness. We are going to see how the Born rule and the Hebbian learning rule are connected
X-Armed Bandits
We consider a generalization of stochastic bandits where the set of arms, $\cX$, is allowed to be a generic measurable space and the mean-payoff function is "locally Lipschitz" with respect to a dissimilarity function that is known to the decision maker. Under this condition we construct an arm selection policy, called HOO (hierarchical optimistic optimization), with improved regret bounds compared to previous results for a large class of problems. In particular, our results imply that if $\cX$ is the unit hypercube in a Euclidean space and the mean-payoff function has a finite number of global maxima around which the behavior of the function is locally continuous with a known smoothness degree, then the expected regret of HOO is bounded up to a logarithmic factor by $\sqrt{n}$, i.e., the rate of growth of the regret is independent of the dimension of the space. We also prove the minimax optimality of our algorithm when the dissimilarity is a metric. Our basic strategy has quadratic computational complexity as a function of the number of time steps and does not rely on the doubling trick. We also introduce a modified strategy, which relies on the doubling trick but runs in linearithmic time. Both results are improvements with respect to previous approaches.
Trajectory Clustering and an Application to Airspace Monitoring
This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Nominal trajectories are determined and learned using data driven methods. Standard procedures are used by air traffic controllers (ATC) to guide aircraft, ensure the safety of the airspace, and to maximize the runway occupancy. Even though standard procedures are used by ATC, the control of the aircraft remains with the pilots, leading to a large variability in the flight patterns observed. Two methods to identify typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as standard. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is "healthy" when all aircraft are flying according to the nominal procedures. A measure of complexity is introduced, measuring the conformance of current flight to nominal flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure a safe separation between aircraft.
Performance Comparisons of PSO based Clustering
In this paper we have investigated the performance of PSO Particle Swarm Optimization based clustering on few real world data sets and one artificial data set. The performances are measured by two metric namely quantization error and inter-cluster distance. The K means clustering algorithm is first implemented for all data sets, the results of which form the basis of comparison of PSO based approaches. We have explored different variants of PSO such as gbest, lbest ring, lbest vonneumann and Hybrid PSO for comparison purposes. The results reveal that PSO based clustering algorithms perform better compared to K means in all data sets.
Feature Level Clustering of Large Biometric Database
This paper proposes an efficient technique for partitioning large biometric database during identification. In this technique feature vector which comprises of global and local descriptors extracted from offline signature are used by fuzzy clustering technique to partition the database. As biometric features posses no natural order of sorting, thus it is difficult to index them alphabetically or numerically. Hence, some supervised criteria is required to partition the search space. At the time of identification the fuzziness criterion is introduced to find the nearest clusters for declaring the identity of query sample. The system is tested using bin-miss rate and performs better in comparison to traditional k-means approach.
Fusion of Multiple Matchers using SVM for Offline Signature Identification
This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The proposed system is tested on a signature database contains 5400 offline signatures of 600 individuals and the results are found to be promising.
Aggregating Algorithm competing with Banach lattices
The paper deals with on-line regression settings with signals belonging to a Banach lattice. Our algorithms work in a semi-online setting where all the inputs are known in advance and outcomes are unknown and given step by step. We apply the Aggregating Algorithm to construct a prediction method whose cumulative loss over all the input vectors is comparable with the cumulative loss of any linear functional on the Banach lattice. As a by-product we get an algorithm that takes signals from an arbitrary domain. Its cumulative loss is comparable with the cumulative loss of any predictor function from Besov and Triebel-Lizorkin spaces. We describe several applications of our setting.
Efficient Bayesian Learning in Social Networks with Gaussian Estimators
We consider a group of Bayesian agents who try to estimate a state of the world $\theta$ through interaction on a social network. Each agent $v$ initially receives a private measurement of $\theta$: a number $S_v$ picked from a Gaussian distribution with mean $\theta$ and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of $\theta$ to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most $2N \cdot D$ steps, where $N$ is the number of agents and $D$ is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after $D$ steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.
Prequential Plug-In Codes that Achieve Optimal Redundancy Rates even if the Model is Wrong
We analyse the prequential plug-in codes relative to one-parameter exponential families M. We show that if data are sampled i.i.d. from some distribution outside M, then the redundancy of any plug-in prequential code grows at rate larger than 1/2 ln(n) in the worst case. This means that plug-in codes, such as the Rissanen-Dawid ML code, may behave inferior to other important universal codes such as the 2-part MDL, Shtarkov and Bayes codes, for which the redundancy is always 1/2 ln(n) + O(1). However, we also show that a slight modification of the ML plug-in code, "almost" in the model, does achieve the optimal redundancy even if the the true distribution is outside M.
A CHAID Based Performance Prediction Model in Educational Data Mining
The performance in higher secondary school education in India is a turning point in the academic lives of all students. As this academic performance is influenced by many factors, it is essential to develop predictive data mining model for students' performance so as to identify the slow learners and study the influence of the dominant factors on their academic performance. In the present investigation, a survey cum experimental methodology was adopted to generate a database and it was constructed from a primary and a secondary source. While the primary data was collected from the regular students, the secondary data was gathered from the school and office of the Chief Educational Officer (CEO). A total of 1000 datasets of the year 2006 from five different schools in three different districts of Tamilnadu were collected. The raw data was preprocessed in terms of filling up missing values, transforming values in one form into another and relevant attribute/ variable selection. As a result, we had 772 student records, which were used for CHAID prediction model construction. A set of prediction rules were extracted from CHIAD prediction model and the efficiency of the generated CHIAD prediction model was found. The accuracy of the present model was compared with other model and it has been found to be satisfactory.
Dimensionality Reduction: An Empirical Study on the Usability of IFE-CF (Independent Feature Elimination- by C-Correlation and F-Correlation) Measures
The recent increase in dimensionality of data has thrown a great challenge to the existing dimensionality reduction methods in terms of their effectiveness. Dimensionality reduction has emerged as one of the significant preprocessing steps in machine learning applications and has been effective in removing inappropriate data, increasing learning accuracy, and improving comprehensibility. Feature redundancy exercises great influence on the performance of classification process. Towards the better classification performance, this paper addresses the usefulness of truncating the highly correlated and redundant attributes. Here, an effort has been made to verify the utility of dimensionality reduction by applying LVQ (Learning Vector Quantization) method on two Benchmark datasets of 'Pima Indian Diabetic patients' and 'Lung cancer patients'.
A Minimum Relative Entropy Controller for Undiscounted Markov Decision Processes
Adaptive control problems are notoriously difficult to solve even in the presence of plant-specific controllers. One way to by-pass the intractable computation of the optimal policy is to restate the adaptive control as the minimization of the relative entropy of a controller that ignores the true plant dynamics from an informed controller. The solution is given by the Bayesian control rule-a set of equations characterizing a stochastic adaptive controller for the class of possible plant dynamics. Here, the Bayesian control rule is applied to derive BCR-MDP, a controller to solve undiscounted Markov decision processes with finite state and action spaces and unknown dynamics. In particular, we derive a non-parametric conjugate prior distribution over the policy space that encapsulates the agent's whole relevant history and we present a Gibbs sampler to draw random policies from this distribution. Preliminary results show that BCR-MDP successfully avoids sub-optimal limit cycles due to its built-in mechanism to balance exploration versus exploitation.
Online Distributed Sensor Selection
A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observation-dependent sensor selection. We empirically demonstrate the effectiveness of our algorithm on several real-world sensing tasks.
On the Stability of Empirical Risk Minimization in the Presence of Multiple Risk Minimizers
Recently Kutin and Niyogi investigated several notions of algorithmic stability--a property of a learning map conceptually similar to continuity--showing that training-stability is sufficient for consistency of Empirical Risk Minimization while distribution-free CV-stability is necessary and sufficient for having finite VC-dimension. This paper concerns a phase transition in the training stability of ERM, conjectured by the same authors. Kutin and Niyogi proved that ERM on finite hypothesis spaces containing a unique risk minimizer has training stability that scales exponentially with sample size, and conjectured that the existence of multiple risk minimizers prevents even super-quadratic convergence. We prove this result for the strictly weaker notion of CV-stability, positively resolving the conjecture.
Intrinsic dimension estimation of data by principal component analysis
Estimating intrinsic dimensionality of data is a classic problem in pattern recognition and statistics. Principal Component Analysis (PCA) is a powerful tool in discovering dimensionality of data sets with a linear structure; it, however, becomes ineffective when data have a nonlinear structure. In this paper, we propose a new PCA-based method to estimate intrinsic dimension of data with nonlinear structures. Our method works by first finding a minimal cover of the data set, then performing PCA locally on each subset in the cover and finally giving the estimation result by checking up the data variance on all small neighborhood regions. The proposed method utilizes the whole data set to estimate its intrinsic dimension and is convenient for incremental learning. In addition, our new PCA procedure can filter out noise in data and converge to a stable estimation with the neighborhood region size increasing. Experiments on synthetic and real world data sets show effectiveness of the proposed method.
Reverse Engineering Financial Markets with Majority and Minority Games using Genetic Algorithms
Using virtual stock markets with artificial interacting software investors, aka agent-based models (ABMs), we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Index.
A Generalization of the Chow-Liu Algorithm and its Application to Statistical Learning
We extend the Chow-Liu algorithm for general random variables while the previous versions only considered finite cases. In particular, this paper applies the generalization to Suzuki's learning algorithm that generates from data forests rather than trees based on the minimum description length by balancing the fitness of the data to the forest and the simplicity of the forest. As a result, we successfully obtain an algorithm when both of the Gaussian and finite random variables are present.
Application of k Means Clustering algorithm for prediction of Students Academic Performance
The ability to monitor the progress of students academic performance is a critical issue to the academic community of higher learning. A system for analyzing students results based on cluster analysis and uses standard statistical algorithms to arrange their scores data according to the level of their performance is described. In this paper, we also implemented k mean clustering algorithm for analyzing students result data. The model was combined with the deterministic model to analyze the students results of a private Institution in Nigeria which is a good benchmark to monitor the progression of academic performance of students in higher Institution for the purpose of making an effective decision by the academic planners.
Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm
We show that matrix completion with trace-norm regularization can be significantly hurt when entries of the matrix are sampled non-uniformly. We introduce a weighted version of the trace-norm regularizer that works well also with non-uniform sampling. Our experimental results demonstrate that the weighted trace-norm regularization indeed yields significant gains on the (highly non-uniformly sampled) Netflix dataset.
Convergence of Bayesian Control Rule
Recently, new approaches to adaptive control have sought to reformulate the problem as a minimization of a relative entropy criterion to obtain tractable solutions. In particular, it has been shown that minimizing the expected deviation from the causal input-output dependencies of the true plant leads to a new promising stochastic control rule called the Bayesian control rule. This work proves the convergence of the Bayesian control rule under two sufficient assumptions: boundedness, which is an ergodicity condition; and consistency, which is an instantiation of the sure-thing principle.
A new approach to content-based file type detection
File type identification and file type clustering may be difficult tasks that have an increasingly importance in the field of computer and network security. Classical methods of file type detection including considering file extensions and magic bytes can be easily spoofed. Content-based file type detection is a newer way that is taken into account recently. In this paper, a new content-based method for the purpose of file type detection and file type clustering is proposed that is based on the PCA and neural networks. The proposed method has a good accuracy and is fast enough.
A Complete Characterization of Statistical Query Learning with Applications to Evolvability
Statistical query (SQ) learning model of Kearns (1993) is a natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the examples themselves. We describe a new and simple characterization of the query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ learning our characterization preserves the accuracy and the efficiency of learning. The preservation of accuracy implies that that our characterization gives the first characterization of SQ learning in the agnostic learning framework. The preservation of efficiency is achieved using a new boosting technique and allows us to derive a new approach to the design of evolutionary algorithms in Valiant's (2006) model of evolvability. We use this approach to demonstrate the existence of a large class of monotone evolutionary learning algorithms based on square loss performance estimation. These results differ significantly from the few known evolutionary algorithms and give evidence that evolvability in Valiant's model is a more versatile phenomenon than there had been previous reason to suspect.
Interactive Submodular Set Cover
We introduce a natural generalization of submodular set cover and exact active learning with a finite hypothesis class (query learning). We call this new problem interactive submodular set cover. Applications include advertising in social networks with hidden information. We give an approximation guarantee for a novel greedy algorithm and give a hardness of approximation result which matches up to constant factors. We also discuss negative results for simpler approaches and present encouraging early experimental results.
Word level Script Identification from Bangla and Devanagri Handwritten Texts mixed with Roman Script
India is a multi-lingual country where Roman script is often used alongside different Indic scripts in a text document. To develop a script specific handwritten Optical Character Recognition (OCR) system, it is therefore necessary to identify the scripts of handwritten text correctly. In this paper, we present a system, which automatically separates the scripts of handwritten words from a document, written in Bangla or Devanagri mixed with Roman scripts. In this script separation technique, we first, extract the text lines and words from document pages using a script independent Neighboring Component Analysis technique. Then we have designed a Multi Layer Perceptron (MLP) based classifier for script separation, trained with 8 different wordlevel holistic features. Two equal sized datasets, one with Bangla and Roman scripts and the other with Devanagri and Roman scripts, are prepared for the system evaluation. On respective independent text samples, word-level script identification accuracies of 99.29% and 98.43% are achieved.
Handwritten Bangla Basic and Compound character recognition using MLP and SVM classifier
A novel approach for recognition of handwritten compound Bangla characters, along with the Basic characters of Bangla alphabet, is presented here. Compared to English like Roman script, one of the major stumbling blocks in Optical Character Recognition (OCR) of handwritten Bangla script is the large number of complex shaped character classes of Bangla alphabet. In addition to 50 basic character classes, there are nearly 160 complex shaped compound character classes in Bangla alphabet. Dealing with such a large varieties of handwritten characters with a suitably designed feature set is a challenging problem. Uncertainty and imprecision are inherent in handwritten script. Moreover, such a large varieties of complex shaped characters, some of which have close resemblance, makes the problem of OCR of handwritten Bangla characters more difficult. Considering the complexity of the problem, the present approach makes an attempt to identify compound character classes from most frequently to less frequently occurred ones, i.e., in order of importance. This is to develop a frame work for incrementally increasing the number of learned classes of compound characters from more frequently occurred ones to less frequently occurred ones along with Basic characters. On experimentation, the technique is observed produce an average recognition rate of 79.25 after three fold cross validation of data with future scope of improvement and extension.
Supervised Classification Performance of Multispectral Images
Nowadays government and private agencies use remote sensing imagery for a wide range of applications from military applications to farm development. The images may be a panchromatic, multispectral, hyperspectral or even ultraspectral of terra bytes. Remote sensing image classification is one amongst the most significant application worlds for remote sensing. A few number of image classification algorithms have proved good precision in classifying remote sensing data. But, of late, due to the increasing spatiotemporal dimensions of the remote sensing data, traditional classification algorithms have exposed weaknesses necessitating further research in the field of remote sensing image classification. So an efficient classifier is needed to classify the remote sensing images to extract information. We are experimenting with both supervised and unsupervised classification. Here we compare the different classification methods and their performances. It is found that Mahalanobis classifier performed the best in our classification.
Contextual Bandit Algorithms with Supervised Learning Guarantees
We address the problem of learning in an online, bandit setting where the learner must repeatedly select among $K$ actions, but only receives partial feedback based on its choices. We establish two new facts: First, using a new algorithm called Exp4.P, we show that it is possible to compete with the best in a set of $N$ experts with probability $1-\delta$ while incurring regret at most $O(\sqrt{KT\ln(N/\delta)})$ over $T$ time steps. The new algorithm is tested empirically in a large-scale, real-world dataset. Second, we give a new algorithm called VE that competes with a possibly infinite set of policies of VC-dimension $d$ while incurring regret at most $O(\sqrt{T(d\ln(T) + \ln (1/\delta))})$ with probability $1-\delta$. These guarantees improve on those of all previous algorithms, whether in a stochastic or adversarial environment, and bring us closer to providing supervised learning type guarantees for the contextual bandit setting.
Principal Component Analysis with Contaminated Data: The High Dimensional Case
We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some (arbitrarily) corrupted observations. We propose a High-dimensional Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to contaminated points, and easily kernelizable. The resulting subspace has a bounded deviation from the desired one, achieves maximal robustness -- a breakdown point of 50% while all existing algorithms have a breakdown point of zero, and unlike ordinary PCA algorithms, achieves optimality in the limit case where the proportion of corrupted points goes to zero.
Gaussian Process Structural Equation Models with Latent Variables
In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.
Less Regret via Online Conditioning
We analyze and evaluate an online gradient descent algorithm with adaptive per-coordinate adjustment of learning rates. Our algorithm can be thought of as an online version of batch gradient descent with a diagonal preconditioner. This approach leads to regret bounds that are stronger than those of standard online gradient descent for general online convex optimization problems. Experimentally, we show that our algorithm is competitive with state-of-the-art algorithms for large scale machine learning problems.
Adaptive Bound Optimization for Online Convex Optimization
We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm's regret bounds are worst-case optimal, and for certain realistic classes of loss functions they are much better than existing bounds. These bounds are problem-dependent, which means they can exploit the structure of the actual problem instance. Critically, however, our algorithm does not need to know this structure in advance. Rather, we prove competitive guarantees that show the algorithm provides a bound within a constant factor of the best possible bound (of a certain functional form) in hindsight.
Asymptotic Analysis of Generative Semi-Supervised Learning
Semisupervised learning has emerged as a popular framework for improving modeling accuracy while controlling labeling cost. Based on an extension of stochastic composite likelihood we quantify the asymptotic accuracy of generative semi-supervised learning. In doing so, we complement distribution-free analysis by providing an alternative framework to measure the value associated with different labeling policies and resolve the fundamental question of how much data to label and in what manner. We demonstrate our approach with both simulation studies and real world experiments using naive Bayes for text classification and MRFs and CRFs for structured prediction in NLP.
A New Understanding of Prediction Markets Via No-Regret Learning
We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and no-regret learning. We show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from expert advice by equating trades made in the market with losses observed by the learning algorithm. If the loss of the market organizer is bounded, this bound can be used to derive an O(sqrt(T)) regret bound for the corresponding learning algorithm. We then show that the class of markets with convex cost functions exactly corresponds to the class of Follow the Regularized Leader learning algorithms, with the choice of a cost function in the market corresponding to the choice of a regularizer in the learning problem. Finally, we show an equivalence between market scoring rules and prediction markets with convex cost functions. This implies that market scoring rules can also be interpreted naturally as Follow the Regularized Leader algorithms, and may be of independent interest. These connections provide new insight into how it is that commonly studied markets, such as the Logarithmic Market Scoring Rule, can aggregate opinions into accurate estimates of the likelihood of future events.
Non-Sparse Regularization for Multiple Kernel Learning
Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations to support interpretability and scalability. Unfortunately, this 1-norm MKL is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures, we generalize MKL to arbitrary norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary norms, like p-norms with p>1. Empirically, we demonstrate that the interleaved optimization strategies are much faster compared to the commonly used wrapper approaches. A theoretical analysis and an experiment on controlled artificial data experiment sheds light on the appropriateness of sparse, non-sparse and $\ell_\infty$-norm MKL in various scenarios. Empirical applications of p-norm MKL to three real-world problems from computational biology show that non-sparse MKL achieves accuracies that go beyond the state-of-the-art.
Learning from Logged Implicit Exploration Data
We provide a sound and consistent foundation for the use of \emph{nonrandom} exploration data in "contextual bandit" or "partially labeled" settings where only the value of a chosen action is learned. The primary challenge in a variety of settings is that the exploration policy, in which "offline" data is logged, is not explicitly known. Prior solutions here require either control of the actions during the learning process, recorded random exploration, or actions chosen obliviously in a repeated manner. The techniques reported here lift these restrictions, allowing the learning of a policy for choosing actions given features from historical data where no randomization occurred or was logged. We empirically verify our solution on two reasonably sized sets of real-world data obtained from Yahoo!.
A Contextual-Bandit Approach to Personalized News Article Recommendation
Personalized web services strive to adapt their services (advertisements, news articles, etc) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamically changing pools of content, rendering traditional collaborative filtering methods inapplicable. Second, the scale of most web services of practical interest calls for solutions that are both fast in learning and computation. In this work, we model personalized recommendation of news articles as a contextual bandit problem, a principled approach in which a learning algorithm sequentially selects articles to serve users based on contextual information about the users and articles, while simultaneously adapting its article-selection strategy based on user-click feedback to maximize total user clicks. The contributions of this work are three-fold. First, we propose a new, general contextual bandit algorithm that is computationally efficient and well motivated from learning theory. Second, we argue that any bandit algorithm can be reliably evaluated offline using previously recorded random traffic. Finally, using this offline evaluation method, we successfully applied our new algorithm to a Yahoo! Front Page Today Module dataset containing over 33 million events. Results showed a 12.5% click lift compared to a standard context-free bandit algorithm, and the advantage becomes even greater when data gets more scarce.
Detecting Weak but Hierarchically-Structured Patterns in Networks
The ability to detect weak distributed activation patterns in networks is critical to several applications, such as identifying the onset of anomalous activity or incipient congestion in the Internet, or faint traces of a biochemical spread by a sensor network. This is a challenging problem since weak distributed patterns can be invisible in per node statistics as well as a global network-wide aggregate. Most prior work considers situations in which the activation/non-activation of each node is statistically independent, but this is unrealistic in many problems. In this paper, we consider structured patterns arising from statistical dependencies in the activation process. Our contributions are three-fold. First, we propose a sparsifying transform that succinctly represents structured activation patterns that conform to a hierarchical dependency graph. Second, we establish that the proposed transform facilitates detection of very weak activation patterns that cannot be detected with existing methods. Third, we show that the structure of the hierarchical dependency graph governing the activation process, and hence the network transform, can be learnt from very few (logarithmic in network size) independent snapshots of network activity.
Unsupervised Supervised Learning II: Training Margin Based Classifiers without Labels
Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained by optimizing a margin-based risk function. Traditionally, these risk functions are computed based on a labeled dataset. We develop a novel technique for estimating such risks using only unlabeled data and the marginal label distribution. We prove that the proposed risk estimator is consistent on high-dimensional datasets and demonstrate it on synthetic and real-world data. In particular, we show how the estimate is used for evaluating classifiers in transfer learning, and for training classifiers with no labeled data whatsoever.
Model Selection with the Loss Rank Principle
A key issue in statistics and machine learning is to automatically select the "right" model complexity, e.g., the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. We suggest a novel principle - the Loss Rank Principle (LoRP) - for model selection in regression and classification. It is based on the loss rank, which counts how many other (fictitious) data would be fitted better. LoRP selects the model that has minimal loss rank. Unlike most penalized maximum likelihood variants (AIC, BIC, MDL), LoRP depends only on the regression functions and the loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like kNN.
A Unified Algorithmic Framework for Multi-Dimensional Scaling
In this paper, we propose a unified algorithmic framework for solving many known variants of \mds. Our algorithm is a simple iterative scheme with guaranteed convergence, and is \emph{modular}; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods, in comparable time. We expect that this framework will be useful for a number of \mds variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a compliment to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, where projecting to a random $O((1/\eps^2) \log n)$-dimensional sphere causes $\eps$-distortion.
Statistical and Computational Tradeoffs in Stochastic Composite Likelihood
Maximum likelihood estimators are often of limited practical use due to the intensive computation they require. We propose a family of alternative estimators that maximize a stochastic variation of the composite likelihood function. Each of the estimators resolve the computation-accuracy tradeoff differently, and taken together they span a continuous spectrum of computation-accuracy tradeoff resolutions. We prove the consistency of the estimators, provide formulas for their asymptotic variance, statistical robustness, and computational complexity. We discuss experimental results in the context of Boltzmann machines and conditional random fields. The theoretical and experimental studies demonstrate the effectiveness of the estimators when the computational resources are insufficient. They also demonstrate that in some cases reduced computational complexity is associated with robustness thereby increasing statistical accuracy.
Exponential Family Hybrid Semi-Supervised Learning
We present an approach to semi-supervised learning based on an exponential family characterization. Our approach generalizes previous work on coupled priors for hybrid generative/discriminative models. Our model is more flexible and natural than previous approaches. Experimental results on several data sets show that our approach also performs better in practice.
Learning by random walks in the weight space of the Ising perceptron
Several variants of a stochastic local search process for constructing the synaptic weights of an Ising perceptron are studied. In this process, binary patterns are sequentially presented to the Ising perceptron and are then learned as the synaptic weight configuration is modified through a chain of single- or double-weight flips within the compatible weight configuration space of the earlier learned patterns. This process is able to reach a storage capacity of $\alpha \approx 0.63$ for pattern length N = 101 and $\alpha \approx 0.41$ for N = 1001. If in addition a relearning process is exploited, the learning performance is further improved to a storage capacity of $\alpha \approx 0.80$ for N = 101 and $\alpha \approx 0.42$ for N=1001. We found that, for a given learning task, the solutions constructed by the random walk learning process are separated by a typical Hamming distance, which decreases with the constraint density $\alpha$ of the learning task; at a fixed value of $\alpha$, the width of the Hamming distance distributions decreases with $N$.
From Frequency to Meaning: Vector Space Models of Semantics
Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field.
Hitting and commute times in large graphs are often misleading
Next to the shortest path distance, the second most popular distance function between vertices in a graph is the commute distance (resistance distance). For two vertices u and v, the hitting time H_{uv} is the expected time it takes a random walk to travel from u to v. The commute time is its symmetrized version C_{uv} = H_{uv} + H_{vu}. In our paper we study the behavior of hitting times and commute distances when the number n of vertices in the graph is very large. We prove that as n converges to infinty, hitting times and commute distances converge to expressions that do not take into account the global structure of the graph at all. Namely, the hitting time H_{uv} converges to 1/d_v and the commute time to 1/d_u + 1/d_v where d_u and d_v denote the degrees of vertices u and v. In these cases, the hitting and commute times are misleading in the sense that they do not provide information about the structure of the graph. We focus on two major classes of random graphs: random geometric graphs (k-nearest neighbor graphs, epsilon-graphs, Gaussian similarity graphs) and random graphs with given expected degrees (in particular, Erdos-Renyi graphs with and without planted partitions)
Faster Rates for training Max-Margin Markov Networks
Structured output prediction is an important machine learning problem both in theory and practice, and the max-margin Markov network (\mcn) is an effective approach. All state-of-the-art algorithms for optimizing \mcn\ objectives take at least $O(1/\epsilon)$ number of iterations to find an $\epsilon$ accurate solution. Recent results in structured optimization suggest that faster rates are possible by exploiting the structure of the objective function. Towards this end \citet{Nesterov05} proposed an excessive gap reduction technique based on Euclidean projections which converges in $O(1/\sqrt{\epsilon})$ iterations on strongly convex functions. Unfortunately when applied to \mcn s, this approach does not admit graphical model factorization which, as in many existing algorithms, is crucial for keeping the cost per iteration tractable. In this paper, we present a new excessive gap reduction technique based on Bregman projections which admits graphical model factorization naturally, and converges in $O(1/\sqrt{\epsilon})$ iterations. Compared with existing algorithms, the convergence rate of our method has better dependence on $\epsilon$ and other parameters of the problem, and can be easily kernelized.
Local Space-Time Smoothing for Version Controlled Documents
Unlike static documents, version controlled documents are continuously edited by one or more authors. Such collaborative revision process makes traditional modeling and visualization techniques inappropriate. In this paper we propose a new representation based on local space-time smoothing that captures important revision patterns. We demonstrate the applicability of our framework using experiments on synthetic and real-world data.
A New Clustering Approach based on Page's Path Similarity for Navigation Patterns Mining
In recent years, predicting the user's next request in web navigation has received much attention. An information source to be used for dealing with such problem is the left information by the previous web users stored at the web access log on the web servers. Purposed systems for this problem work based on this idea that if a large number of web users request specific pages of a website on a given session, it can be concluded that these pages are satisfying similar information needs, and therefore they are conceptually related. In this study, a new clustering approach is introduced that employs logical path storing of a website pages as another parameter which is regarded as a similarity parameter and conceptual relation between web pages. The results of simulation have shown that the proposed approach is more than others precise in determining the clusters.
Evaluation of E-Learners Behaviour using Different Fuzzy Clustering Models: A Comparative Study
This paper introduces an evaluation methodologies for the e-learners' behaviour that will be a feedback to the decision makers in e-learning system. Learner's profile plays a crucial role in the evaluation process to improve the e-learning process performance. The work focuses on the clustering of the e-learners based on their behaviour into specific categories that represent the learner's profiles. The learners' classes named as regular, workers, casual, bad, and absent. The work may answer the question of how to return bad students to be regular ones. The work presented the use of different fuzzy clustering techniques as fuzzy c-means and kernelized fuzzy c-means to find the learners' categories and predict their profiles. The paper presents the main phases as data description, preparation, features selection, and the experiments design using different fuzzy clustering models. Analysis of the obtained results and comparison with the real world behavior of those learners proved that there is a match with percentage of 78%. Fuzzy clustering reflects the learners' behavior more than crisp clustering. Comparison between FCM and KFCM proved that the KFCM is much better than FCM in predicting the learners' behaviour.