dathi103's picture
End of training
05e1a7e verified
|
raw
history blame
3.76 kB
metadata
license: mit
base_model: dathi103/bert-job-german-extended
tags:
  - generated_from_trainer
model-index:
  - name: gerskill-bert-job-extended
    results: []

gerskill-bert-job-extended

This model is a fine-tuned version of dathi103/bert-job-german-extended on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1171
  • Hard: {'precision': 0.7376681614349776, 'recall': 0.8225, 'f1': 0.7777777777777777, 'number': 800}
  • Soft: {'precision': 0.7541899441340782, 'recall': 0.8709677419354839, 'f1': 0.8083832335329341, 'number': 155}
  • Overall Precision: 0.7404
  • Overall Recall: 0.8304
  • Overall F1: 0.7828
  • Overall Accuracy: 0.9675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Hard Soft Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 158 0.1042 {'precision': 0.6269592476489029, 'recall': 0.75, 'f1': 0.6829823562891292, 'number': 800} {'precision': 0.6632124352331606, 'recall': 0.8258064516129032, 'f1': 0.735632183908046, 'number': 155} 0.6330 0.7623 0.6917 0.9604
No log 2.0 316 0.0984 {'precision': 0.6931567328918322, 'recall': 0.785, 'f1': 0.7362250879249707, 'number': 800} {'precision': 0.6084905660377359, 'recall': 0.832258064516129, 'f1': 0.7029972752043598, 'number': 155} 0.6771 0.7927 0.7303 0.9635
No log 3.0 474 0.1017 {'precision': 0.7263513513513513, 'recall': 0.80625, 'f1': 0.764218009478673, 'number': 800} {'precision': 0.696969696969697, 'recall': 0.8903225806451613, 'f1': 0.7818696883852692, 'number': 155} 0.7210 0.8199 0.7673 0.9674
0.1083 4.0 632 0.1105 {'precision': 0.7414187643020596, 'recall': 0.81, 'f1': 0.7741935483870969, 'number': 800} {'precision': 0.7653631284916201, 'recall': 0.8838709677419355, 'f1': 0.8203592814371258, 'number': 155} 0.7455 0.8220 0.7819 0.9685
0.1083 5.0 790 0.1171 {'precision': 0.7376681614349776, 'recall': 0.8225, 'f1': 0.7777777777777777, 'number': 800} {'precision': 0.7541899441340782, 'recall': 0.8709677419354839, 'f1': 0.8083832335329341, 'number': 155} 0.7404 0.8304 0.7828 0.9675

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2