metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: kd-distilBERT-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: train
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.947741935483871
kd-distilBERT-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.2641
- Accuracy: 0.9477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0141 | 1.0 | 318 | 0.2389 | 0.9487 |
0.0083 | 2.0 | 636 | 0.2485 | 0.9490 |
0.0063 | 3.0 | 954 | 0.2574 | 0.9481 |
0.0043 | 4.0 | 1272 | 0.2641 | 0.9477 |
0.0038 | 5.0 | 1590 | 0.2641 | 0.9477 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2