Edit model card

komt : korean multi task instruction tuning model

multi task instruction tuning.jpg

Recently, due to the success of ChatGPT, numerous large language models have emerged in an attempt to catch up with ChatGPT's capabilities. However, when it comes to Korean language performance, it has been observed that many models still struggle to provide accurate answers or generate Korean text effectively. This study addresses these challenges by introducing a multi-task instruction technique that leverages supervised datasets from various tasks to create training data for Large Language Models (LLMs).

Model Details

  • Model Developers : davidkim(changyeon kim)
  • Repository : https://github.com/davidkim205/komt
  • quant methods : q4_0, q4_1, q5_0, q5_1, q2_k, q3_k, q3_k_m, q3_k_l, q4_k, q4_k_s, q4_k_m, q5_k, q5_k_s, q5_k_m, q8_0, q4_0

Training

Refer https://github.com/davidkim205/komt

Evaluation

For objective model evaluation, we initially used EleutherAI's lm-evaluation-harness but obtained unsatisfactory results. Consequently, we conducted evaluations using ChatGPT, a widely used model, as described in Self-Alignment with Instruction Backtranslation and Three Ways of Using Large Language Models to Evaluate Chat .

model score average(0~5) percentage
gpt-3.5-turbo(close) 147 3.97 79.45%
naver Cue(close) 140 3.78 75.67%
clova X(close) 136 3.67 73.51%
WizardLM-13B-V1.2(open) 96 2.59 51.89%
Llama-2-7b-chat-hf(open) 67 1.81 36.21%
Llama-2-13b-chat-hf(open) 73 1.91 38.37%
nlpai-lab/kullm-polyglot-12.8b-v2(open) 70 1.89 37.83%
kfkas/Llama-2-ko-7b-Chat(open) 96 2.59 51.89%
beomi/KoAlpaca-Polyglot-12.8B(open) 100 2.70 54.05%
komt-llama2-7b-v1 (open)(ours) 117 3.16 63.24%
komt-llama2-13b-v1 (open)(ours) 129 3.48 69.72%
Downloads last month
234
GGUF
Model size
6.74B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.