MarcoBackground-SimpleTrigger-Dev2Pro-QuarterEighthCrops-Flux-LoKr
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
No validation prompt was used during training.
None
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1408x768
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 5
Training steps: 8001
Learning rate: 8e-05
- Learning rate schedule: constant
- Warmup steps: 100
Max grad norm: 0.1
Effective batch size: 3
- Micro-batch size: 3
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Caption dropout probability: 10.0%
SageAttention: Enabled inference
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
marco-background-512
- Repeats: 22
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
marco-background-768
- Repeats: 22
- Total number of images: 34
- Total number of aspect buckets: 3
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
marco-background-1024
- Repeats: 11
- Total number of images: 34
- Total number of aspect buckets: 4
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
marco-background-1536
- Repeats: 5
- Total number of images: 34
- Total number of aspect buckets: 4
- Resolution: 2.359296 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
marco-background-512-crop
- Repeats: 11
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
marco-background-768-crop
- Repeats: 11
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
marco-background-512-tight-crop
- Repeats: 11
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
marco-background-768-tight-crop
- Repeats: 11
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
marco-background-1024-crop
- Repeats: 5
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'davidrd123/MarcoBackground-SimpleTrigger-Dev2Pro-QuarterEighthCrops-Flux-LoKr'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1408,
height=768,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 207
Model tree for davidrd123/MarcoBackground-SimpleTrigger-Dev2Pro-QuarterEighthCrops-Flux-LoKr
Base model
black-forest-labs/FLUX.1-dev