Edit model card

Definition

[phi-2] for [P]ersonal [I]dentifiable [I]nformation with [B]anking [B]anking [I]nsurance Dataset

How to use model

Load model and tokenizer

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer

torch.set_default_device("cuda")

model_name = "dcipheranalytics/phi-2-pii-bbi"

quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
    )

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    # torch_dtype="auto",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    quantization_config=quantization_config,
)

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

Call generate method

def generate(msg: str, max_new_tokens = 300, temperature=0.3):
    chat_template = "<|im_start|>user\n{msg}<|im_end|><|im_start|>assistant\n"
    prompt = chat_template.format(msg=msg)

    with torch.no_grad():
        token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
        output_ids = model.generate(
            token_ids.to(model.device),
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
        output = tokenizer.decode(output_ids[0][token_ids.size(1):-1]).strip()
        return output

instruction_template = "List the personally identifiable information in the given text below.\nText:########\n{text}\n########"
text_with_pii = "My passport number is 123456789."
generate(instruction_template.format(text=text_with_pii))

Batch predictions

from transformers import TextGenerationPipeline

def get_prompt(text):
  instruction_template = "List the personally identifiable information in the given text below.\nText:########\n{text}\n########"
  msg = instruction_template.format(text=text)
  chat_template = "<|im_start|>user\n{msg}<|im_end|><|im_start|>assistant\n"
  prompt = chat_template.format(msg=msg)

  return prompt

generator = TextGenerationPipeline(
                     model=model,
                     tokenizer=tokenizer,
                     max_new_tokens=300,
                     do_sample=True,
                     temperature=0.3,
                     pad_token_id=tokenizer.eos_token_id,
                     eos_token_id=tokenizer.eos_token_id,
                     )

texts = ["My passport number is 123456789.",
         "My name is John Smith.",
]
prompts = list(map(get_prompt, texts))
outputs = generator(prompts, 
                  return_full_text=False, 
                  batch_size=2)

Train Data

GPT4 generated customer service conversations.

  1. 100 unique banking topics, 8 examples per each,
  2. New 100 banking topics, 4 examples per each,
  3. 100 insurance topics, 4 examples per each.

Evaluation Results

Average

precision    0.836223
recall       0.781132
f1           0.801837

Per topic:

image/png

On TAB test split:

precision    0.506118
recall       0.350976
f1           0.391614
Downloads last month
20
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.