Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
flacuna-13b-v1.0 / flacuna.py
deepanway's picture
Update flacuna.py
97a4153
import torch
from dataclasses import dataclass
from peft import LoraConfig, get_peft_model
from transformers import LlamaForCausalLM, LlamaTokenizer
@dataclass
class LoraArguments:
lora_r: int = 8
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules = ["q_proj", "v_proj"]
lora_weight_path: str = ""
bias: str = "none"
if __name__ == "__main__":
device = 0
lora_args = LoraArguments
base_model = "TheBloke/vicuna-13B-1.1-HF"
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = LlamaForCausalLM.from_pretrained(
base_model, load_in_8bit=True,
torch_dtype=torch.float16, device_map={"": device}
)
lora_config = LoraConfig(
r=lora_args.lora_r, lora_alpha=lora_args.lora_alpha, lora_dropout=lora_args.lora_dropout,
target_modules=lora_args.lora_target_modules, bias=lora_args.bias, task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
weight = torch.load("pytorch_model.bin", map_location="cpu")
model.load_state_dict(weight)
prompt = (
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
"USER: You are tasked to demonstrate your writing skills in professional or work settings for the following question.\n"
"Can you help me write a speech for a graduation ceremony, inspiring and motivating the graduates to pursue their dreams and make a positive impact on the world?\n"
"Output: ASSISTANT: "
)
inputs = tokenizer([prompt], return_tensors="pt")
inputs = {k: v.to("cuda:{}".format(device)) for k, v in inputs.items()}
out = model.generate(
**inputs, max_new_tokens=500, min_new_tokens=100, early_stopping=True, do_sample=True, top_k=8, temperature=0.75
)
decoded = tokenizer.decode(out[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
print (decoded)