license: other
license_name: deepseek
license_link: LICENSE
model-index:
- name: deepseek-llm-67b-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.75
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.82
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.42
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.85
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.21
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.68
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-chat
name: Open LLM Leaderboard
[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]
1. Introduction of Deepseek LLM
Introducing DeepSeek LLM, an advanced language model comprising 67 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community.
2. Model Summary
deepseek-llm-67b-chat
is a 67B parameter model initialized from deepseek-llm-67b-base
and fine-tuned on extra instruction data.
- Home Page: DeepSeek
- Repository: deepseek-ai/deepseek-LLM
- Chat With DeepSeek LLM: DeepSeek-LLM
3. How to Use
Here give some examples of how to use our model.
Chat Completion
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-llm-67b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
messages = [
{"role": "user", "content": "Who are you?"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
Avoiding the use of the provided function apply_chat_template
, you can also interact with our model following the sample template. Note that messages
should be replaced by your input.
User: {messages[0]['content']}
Assistant: {messages[1]['content']}<|end▁of▁sentence|>User: {messages[2]['content']}
Assistant:
Note: By default (add_special_tokens=True
), our tokenizer automatically adds a bos_token
(<|begin▁of▁sentence|>
) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input.
4. License
This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use.
See the LICENSE-MODEL for more details.
5. Contact
If you have any questions, please raise an issue or contact us at service@deepseek.com.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.79 |
AI2 Reasoning Challenge (25-Shot) | 67.75 |
HellaSwag (10-Shot) | 86.82 |
MMLU (5-Shot) | 72.42 |
TruthfulQA (0-shot) | 55.85 |
Winogrande (5-shot) | 84.21 |
GSM8k (5-shot) | 63.68 |