|
--- |
|
language: multilingual |
|
datasets: |
|
- squad_v2 |
|
license: mit |
|
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg |
|
tags: |
|
- exbert |
|
--- |
|
|
|
# deepset/xlm-roberta-base-squad2-distilled |
|
- haystack's distillation feature was used for training. deepset/xlm-roberta-large-squad2 was used as the teacher model. |
|
|
|
## Overview |
|
**Language model:** deepset/xlm-roberta-base-squad2-distilled |
|
**Language:** Multilingual |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) |
|
**Infrastructure**: 1x Tesla v100 |
|
|
|
## Hyperparameters |
|
|
|
``` |
|
batch_size = 56 |
|
n_epochs = 4 |
|
max_seq_len = 384 |
|
learning_rate = 3e-5 |
|
lr_schedule = LinearWarmup |
|
embeds_dropout_prob = 0.1 |
|
temperature = 3 |
|
distillation_loss_weight = 0.75 |
|
``` |
|
|
|
## Usage |
|
|
|
### In Haystack |
|
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled") |
|
# or |
|
reader = TransformersReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled",tokenizer="deepset/xlm-roberta-base-squad2-distilled") |
|
``` |
|
For a complete example of ``deepset/xlm-roberta-base-squad2-distilled`` being used for [question answering], check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/xlm-roberta-base-squad2-distilled" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## Performance |
|
Evaluated on the SQuAD 2.0 dev set |
|
``` |
|
"exact": 74.06721131980123% |
|
"f1": 76.39919553344667% |
|
``` |
|
|
|
## Authors |
|
**Timo Möller:** timo.moeller@deepset.ai |
|
**Julian Risch:** julian.risch@deepset.ai |
|
**Malte Pietsch:** malte.pietsch@deepset.ai |
|
**Michel Bartels:** michel.bartels@deepset.ai |
|
|
|
## About us |
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. |
|
|
|
|
|
Some of our other work: |
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) |
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) |
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) |
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |