Encoders
Collection
4 items
•
Updated
Pretrained bidirectional encoder for russian language.
The model was trained using standard MLM objective on large text corpora including open social data.
See Training Details
section for more information.
⚠️ This model contains only the encoder part without any pretrained head.
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("deepvk/bert-base-uncased")
model = AutoModel.from_pretrained("deepvk/bert-base-uncased")
text = "Привет, мир!"
inputs = tokenizer(text, return_tensors='pt')
predictions = model(**inputs)
The model was trained using the NVIDIA source code. See the pretraining documentation for details.
250 GB of filtered texts in total. A mix of the following data: Wikipedia, Books and Social corpus.
Argument | Value |
---|---|
Encoder layers | 12 |
Encoder attention heads | 12 |
Encoder embed dim | 768 |
Encoder ffn embed dim | 3,072 |
Activation function | GeLU |
Attention dropout | 0.1 |
Dropout | 0.1 |
Max positions | 512 |
Vocab size | 36000 |
Tokenizer type | BertTokenizer |
We evaluated the model on Russian Super Glue dev set. The best result in each task is marked in bold. All models have the same size except the distilled version of DeBERTa.
Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score |
---|---|---|---|---|---|---|---|---|
vk-deberta-distill | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
vk-roberta-base | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
vk-deberta-base | 0.450 | 0.61 | 0.722 | 0.704 | 0.948 | 0.578 | 0.76 | 0.682 |
vk-bert-base | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 | 0.583 | 0.737 | 0.657 |
sber-bert-base | 0.491 | 0.61 | 0.663 | 0.769 | 0.962 | 0.574 | 0.678 | 0.678 |