|
--- |
|
license: apache-2.0 |
|
language: |
|
- tr |
|
metrics: |
|
- accuracy |
|
- recall |
|
- f1 |
|
tags: |
|
- deprem-clf-v1 |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
model-index: |
|
- name: deprem_v12 |
|
results: |
|
- task: |
|
type: text-classification |
|
dataset: |
|
type: deprem_private_dataset_v1_2 |
|
name: deprem_private_dataset_v1_2 |
|
metrics: |
|
- type: recall |
|
value: 0.82 |
|
verified: false |
|
- type: f1 |
|
value: 0.76 |
|
verified: false |
|
widget: |
|
- text: >- |
|
acil acil acil antakyadan istanbula gitmek için antakya expoya ulaşmaya çalışan 19 kişilik bir aile için şehir içi ulaşım desteği istiyoruz. dışardalar üşüyorlar.iletebileceğiniz numaraları bekliyorum |
|
example_title: Örnek |
|
--- |
|
|
|
|
|
|
|
## Eval Results |
|
``` |
|
precision recall f1-score support |
|
|
|
Alakasiz 0.87 0.91 0.89 734 |
|
Barinma 0.79 0.89 0.84 207 |
|
Elektronik 0.69 0.83 0.75 130 |
|
Giysi 0.71 0.81 0.76 94 |
|
Kurtarma 0.82 0.85 0.83 362 |
|
Lojistik 0.57 0.67 0.62 112 |
|
Saglik 0.68 0.85 0.75 108 |
|
Su 0.56 0.76 0.64 78 |
|
Yagma 0.60 0.77 0.68 31 |
|
Yemek 0.71 0.89 0.79 117 |
|
|
|
micro avg 0.77 0.86 0.81 1973 |
|
macro avg 0.70 0.82 0.76 1973 |
|
weighted avg 0.78 0.86 0.82 1973 |
|
samples avg 0.83 0.88 0.84 1973 |
|
|
|
|
|
``` |
|
|
|
## Training Params: |
|
```python |
|
{'per_device_train_batch_size': 32, |
|
'per_device_eval_batch_size': 32, |
|
'learning_rate': 5.8679699888213376e-05, |
|
'weight_decay': 0.03530961718117487, |
|
'num_train_epochs': 4, |
|
'lr_scheduler_type': 'cosine', |
|
'warmup_steps': 40, |
|
'seed': 42, |
|
'fp16': True, |
|
'load_best_model_at_end': True, |
|
'metric_for_best_model': 'macro f1', |
|
'greater_is_better': True |
|
} |
|
``` |
|
|
|
## Threshold: |
|
- **Best Threshold:** 0.40 |
|
|
|
## Class Loss Weights |
|
- Same as Anıl's approach. |