|
--- |
|
license: mit |
|
base_model: FacebookAI/roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: roberta-baseB_10epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-baseB_10epoch |
|
|
|
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1305 |
|
- Accuracy: 0.8379 |
|
- Precision: 0.0983 |
|
- Recall: 0.0258 |
|
- F1: 0.0355 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 217 | 0.1250 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| No log | 2.0 | 434 | 0.1276 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| 0.1727 | 3.0 | 651 | 0.1281 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| 0.1727 | 4.0 | 868 | 0.1275 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| 0.1577 | 5.0 | 1085 | 0.1296 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| 0.1577 | 6.0 | 1302 | 0.1265 | 0.8571 | 0.0 | 0.0 | 0.0 | |
|
| 0.1533 | 7.0 | 1519 | 0.1329 | 0.8529 | 0.0 | 0.0 | 0.0 | |
|
| 0.1533 | 8.0 | 1736 | 0.1268 | 0.8486 | 0.0604 | 0.0037 | 0.0070 | |
|
| 0.1533 | 9.0 | 1953 | 0.1292 | 0.8414 | 0.0789 | 0.0148 | 0.0221 | |
|
| 0.1432 | 10.0 | 2170 | 0.1305 | 0.8379 | 0.0983 | 0.0258 | 0.0355 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|