Edit model card

DictaBERT-Large: A State-of-the-Art BERT-Large Suite for Modern Hebrew

State-of-the-art language model for Hebrew, released here.

This is the fine-tuned BERT-large model for the named-entity-recognition task.

For the bert models for other tasks, see here.

Sample usage:

from transformers import pipeline

oracle = pipeline('ner', model='dicta-il/dictabert-large-ner', aggregation_strategy='simple')

# if we set aggregation_strategy to simple, we need to define a decoder for the tokenizer. Note that the last wordpiece of a group will still be emitted
from tokenizers.decoders import WordPiece
oracle.tokenizer.backend_tokenizer.decoder = WordPiece()

sentence = '''דוד בן-גוריון (16 באוקטובר 1886 - ו' בכסלו תשל"ד) היה מדינאי ישראלי וראש הממשלה הראשון של מדינת ישראל.'''
oracle(sentence)

Output:

[
  {
    "entity_group": "PER",
    "score": 0.9998988,
    "word": "דוד בן - גוריון",
    "start": 0,
    "end": 13
  },
  {
    "entity_group": "TIMEX",
    "score": 0.99989706,
    "word": "16 באוקטובר 1886",
    "start": 15,
    "end": 31
  },
  {
    "entity_group": "TIMEX",
    "score": 0.99991614,
    "word": "ו' בכסלו תשל\"ד",
    "start": 34,
    "end": 48
  },
  {
    "entity_group": "TTL",
    "score": 0.9931756,
    "word": "וראש הממשלה",
    "start": 68,
    "end": 79
  },
  {
    "entity_group": "GPE",
    "score": 0.9995702,
    "word": "ישראל",
    "start": 96,
    "end": 101
  }
]

Citation

If you use DictaBERT in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

BibTeX:

@misc{shmidman2023dictabert,
      title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
      year={2023},
      eprint={2308.16687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

Downloads last month
53
Safetensors
Model size
434M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including dicta-il/dictabert-large-ner