Edit model card

Google's mT5-XL - Finetuned for Hebrew Question-Answering

Google's mT5 multilingual Seq2Seq model, finetuned on HeQ for the Hebrew Question-Answering task.

This is the model that was reported in the DictaBERT release here.

Sample usage:

import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/mt5-xl-heq')
model = AutoModelForSeq2SeqLM.from_pretrained('dicta-il/mt5-xl-heq')

model.eval()

question='ื›ื™ืฆื“ ื”ื•ื’ื‘ืœ ื”ืžื™ื“ืข ืฉื ื™ืชืŸ ืœื”ืฉื™ื’ ื‘ืืžืฆืขื•ืช ื”ืขื•ื’ื™ื•ืช?'
context='ื‘ื ื™ื™ืช ืคืจื•ืคื™ืœื™ื ืฉืœ ืžืฉืชืžืฉื™ื ื ื—ืฉื‘ืช ืขืœ ื™ื“ื™ ืจื‘ื™ื ื›ืื™ื•ื ืคื•ื˜ื ืฆื™ืืœื™ ืขืœ ื”ืคืจื˜ื™ื•ืช. ืžืกื™ื‘ื” ื–ื• ื”ื’ื‘ื™ืœื• ื—ืœืง ืžื”ืžื“ื™ื ื•ืช ื‘ืืžืฆืขื•ืช ื—ืงื™ืงื” ืืช ื”ืžื™ื“ืข ืฉื ื™ืชืŸ ืœื”ืฉื™ื’ ื‘ืืžืฆืขื•ืช ืขื•ื’ื™ื•ืช ื•ืืช ืื•ืคืŸ ื”ืฉื™ืžื•ืฉ ื‘ืขื•ื’ื™ื•ืช. ืืจืฆื•ืช ื”ื‘ืจื™ืช, ืœืžืฉืœ, ืงื‘ืขื” ื—ื•ืงื™ื ื ื•ืงืฉื™ื ื‘ื›ืœ ื”ื ื•ื’ืข ืœื™ืฆื™ืจืช ืขื•ื’ื™ื•ืช ื—ื“ืฉื•ืช. ื—ื•ืงื™ื ืืœื•, ืืฉืจ ื ืงื‘ืขื• ื‘ืฉื ืช 2000, ื ืงื‘ืขื• ืœืื—ืจ ืฉื ื—ืฉืฃ ื›ื™ ื”ืžืฉืจื“ ืœื™ื™ืฉื•ื ื”ืžื“ื™ื ื™ื•ืช ืฉืœ ื”ืžืžืฉืœ ื”ืืžืจื™ืงืื™ ื ื’ื“ ื”ืฉื™ืžื•ืฉ ื‘ืกืžื™ื (ONDCP) ื‘ื‘ื™ืช ื”ืœื‘ืŸ ื”ืฉืชืžืฉ ื‘ืขื•ื’ื™ื•ืช ื›ื“ื™ ืœืขืงื•ื‘ ืื—ืจื™ ืžืฉืชืžืฉื™ื ืฉืฆืคื• ื‘ืคืจืกื•ืžื•ืช ื ื’ื“ ื”ืฉื™ืžื•ืฉ ื‘ืกืžื™ื ื‘ืžื˜ืจื” ืœื‘ื“ื•ืง ื”ืื ืžืฉืชืžืฉื™ื ืืœื• ื ื›ื ืกื• ืœืืชืจื™ื ื”ืชื•ืžื›ื™ื ื‘ืฉื™ืžื•ืฉ ื‘ืกืžื™ื. ื“ื ื™ืืœ ื‘ืจืื ื˜, ืคืขื™ืœ ื”ื“ื•ื’ืœ ื‘ืคืจื˜ื™ื•ืช ื”ืžืฉืชืžืฉื™ื ื‘ืื™ื ื˜ืจื ื˜, ื—ืฉืฃ ื›ื™ ื”-CIA ืฉืœื— ืขื•ื’ื™ื•ืช ืงื‘ื•ืขื•ืช ืœืžื—ืฉื‘ื™ ืื–ืจื—ื™ื ื‘ืžืฉืš ืขืฉืจ ืฉื ื™ื. ื‘-25 ื‘ื“ืฆืžื‘ืจ 2005 ื’ื™ืœื” ื‘ืจืื ื˜ ื›ื™ ื”ืกื•ื›ื ื•ืช ืœื‘ื™ื˜ื—ื•ืŸ ืœืื•ืžื™ (ื”-NSA) ื”ืฉืื™ืจื” ืฉืชื™ ืขื•ื’ื™ื•ืช ืงื‘ื•ืขื•ืช ื‘ืžื—ืฉื‘ื™ ืžื‘ืงืจื™ื ื‘ื’ืœืœ ืฉื“ืจื•ื’ ืชื•ื›ื ื”. ืœืื—ืจ ืฉื”ื ื•ืฉื ืคื•ืจืกื, ื”ื ื‘ื™ื˜ืœื• ืžื™ื“ ืืช ื”ืฉื™ืžื•ืฉ ื‘ื”ืŸ.'

with torch.inference_mode():
    prompt = 'question: %s  context: %s ' % (question, context)
    kwargs = dict(
        inputs=tokenizer(prompt, return_tensors='pt').input_ids.to(model.device),
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=0.75,
        max_length=100,
        min_new_tokens=2
    )
    
    print(tokenizer.batch_decode(model.generate(**kwargs), skip_special_tokens=True))

Output:

["ื‘ืืžืฆืขื•ืช ื—ืงื™ืงื”"]

Citation

If you use mt5-xl-heq in your research, please cite DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

BibTeX:

@misc{shmidman2023dictabert,
      title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
      year={2023},
      eprint={2308.16687},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

Downloads last month
30
Safetensors
Model size
3.74B params
Tensor type
F32
ยท
Inference Examples
Inference API (serverless) has been turned off for this model.