|
--- |
|
base_model: UrukHan/t5-russian-summarization |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: last_run_UrukHan_t5-russian-summarization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/diffraction-zebra/RoseltorgItemsTunning/runs/3b4e0ldl) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/diffraction-zebra/RoseltorgItemsTunning/runs/pvl2qfvv) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/diffraction-zebra/RoseltorgItemsTunning/runs/o04syxyd) |
|
# last_run_UrukHan_t5-russian-summarization |
|
|
|
This model is a fine-tuned version of [UrukHan/t5-russian-summarization](https://huggingface.co/UrukHan/t5-russian-summarization) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6429 |
|
- F1: 0.4241 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00012 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 0.8758 | 0.6667 | 200 | 0.9457 | 0.3173 | |
|
| 0.7212 | 1.3333 | 400 | 0.8009 | 0.3486 | |
|
| 0.5636 | 2.0 | 600 | 0.7738 | 0.3699 | |
|
| 0.4931 | 2.6667 | 800 | 0.7189 | 0.3951 | |
|
| 0.4748 | 3.3333 | 1000 | 0.6766 | 0.4020 | |
|
| 0.4125 | 4.0 | 1200 | 0.6658 | 0.4143 | |
|
| 0.3326 | 4.6667 | 1400 | 0.6481 | 0.4243 | |
|
| 0.2676 | 5.3333 | 1600 | 0.6494 | 0.4063 | |
|
| 0.3643 | 6.0 | 1800 | 0.6383 | 0.4175 | |
|
| 0.2064 | 6.6667 | 2000 | 0.6429 | 0.4241 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.1 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|