digo-prayudha/Indonesian_sentiment
This model is a fine-tuned version of distilbert-base-uncased on sepidmnorozy/Indonesian_sentiment. It achieves the following results on the evaluation set:
- Train Loss: 0.1678
- Validation Loss: 0.2402
- Train Accuracy: 0.9016
- Epoch: 2
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2475, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.4013 | 0.3141 | 0.8667 | 0 |
0.2526 | 0.2923 | 0.8839 | 1 |
0.1678 | 0.2402 | 0.9016 | 2 |
How to use this model in Transformers Library
from transformers import pipeline
model = pipeline("text-classification",model="digo-prayudha/Indonesian_sentiment")
model("Makanannya Enak sekali!")
Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for digo-prayudha/Indonesian_sentiment
Base model
distilbert/distilbert-base-uncased