Edit model card

digo-prayudha/Indonesian_sentiment

This model is a fine-tuned version of distilbert-base-uncased on sepidmnorozy/Indonesian_sentiment. It achieves the following results on the evaluation set:

  • Train Loss: 0.1678
  • Validation Loss: 0.2402
  • Train Accuracy: 0.9016
  • Epoch: 2

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2475, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.4013 0.3141 0.8667 0
0.2526 0.2923 0.8839 1
0.1678 0.2402 0.9016 2

How to use this model in Transformers Library

from transformers import pipeline

model = pipeline("text-classification",model="digo-prayudha/Indonesian_sentiment")

model("Makanannya Enak sekali!")

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for digo-prayudha/Indonesian_sentiment

Finetuned
(6636)
this model

Dataset used to train digo-prayudha/Indonesian_sentiment