File size: 17,196 Bytes
c336648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
##################
# Stable Diffusion Dynamic Thresholding (CFG Scale Fix)
#
# Author: Alex 'mcmonkey' Goodwin
# GitHub URL: https://github.com/mcmonkeyprojects/sd-dynamic-thresholding
# Created: 2022/01/26
# Last updated: 2023/01/30
#
# For usage help, view the README.md file in the extension root, or via the GitHub page.
#
##################
import gradio as gr
import torch, traceback
import dynthres_core
from modules import scripts, script_callbacks, sd_samplers, sd_samplers_compvis, sd_samplers_common
try:
import dynthres_unipc
except Exception as e:
print(f"\n\n======\nError! UniPC sampler support failed to load! Is your WebUI up to date?\n(Error: {e})\n======")
try:
from modules.sd_samplers_kdiffusion import CFGDenoiserKDiffusion as cfgdenoisekdiff
IS_AUTO_16 = True
except Exception as e:
print(f"\n\n======\nWarning! Using legacy KDiff version! Is your WebUI up to date?\n======")
from modules.sd_samplers_kdiffusion import CFGDenoiser as cfgdenoisekdiff
IS_AUTO_16 = False
DISABLE_VISIBILITY = True
######################### Data values #########################
MODES_WITH_VALUE = ["Power Up", "Power Down", "Linear Repeating", "Cosine Repeating", "Sawtooth"]
######################### Script class entrypoint #########################
class Script(scripts.Script):
def title(self):
return "Dynamic Thresholding (CFG Scale Fix)"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
def vis_change(is_vis):
return {"visible": is_vis, "__type__": "update"}
# "Dynamic Thresholding (CFG Scale Fix)"
dtrue = gr.Checkbox(value=True, visible=False)
dfalse = gr.Checkbox(value=False, visible=False)
with gr.Accordion("Dynamic Thresholding (CFG Scale Fix)", open=False, elem_id="dynthres_" + ("img2img" if is_img2img else "txt2img")):
with gr.Row():
enabled = gr.Checkbox(value=False, label="Enable Dynamic Thresholding (CFG Scale Fix)", elem_classes=["dynthres-enabled"], elem_id='dynthres_enabled')
with gr.Group():
gr.HTML(value=f"View <a style=\"border-bottom: 1px #00ffff dotted;\" href=\"https://github.com/mcmonkeyprojects/sd-dynamic-thresholding/wiki/Usage-Tips\">the wiki for usage tips.</a><br><br>", elem_id='dynthres_wiki_link')
mimic_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Mimic CFG Scale', value=7.0, elem_id='dynthres_mimic_scale')
with gr.Accordion("Advanced Options", open=False, elem_id='dynthres_advanced_opts'):
with gr.Row():
threshold_percentile = gr.Slider(minimum=90.0, value=100.0, maximum=100.0, step=0.05, label='Top percentile of latents to clamp', elem_id='dynthres_threshold_percentile')
interpolate_phi = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Interpolate Phi", value=1.0, elem_id='dynthres_interpolate_phi')
with gr.Row():
mimic_mode = gr.Dropdown(dynthres_core.DynThresh.Modes, value="Constant", label="Mimic Scale Scheduler", elem_id='dynthres_mimic_mode')
cfg_mode = gr.Dropdown(dynthres_core.DynThresh.Modes, value="Constant", label="CFG Scale Scheduler", elem_id='dynthres_cfg_mode')
mimic_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, visible=DISABLE_VISIBILITY, label="Minimum value of the Mimic Scale Scheduler", elem_id='dynthres_mimic_scale_min')
cfg_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, visible=DISABLE_VISIBILITY, label="Minimum value of the CFG Scale Scheduler", elem_id='dynthres_cfg_scale_min')
sched_val = gr.Slider(minimum=0.0, maximum=40.0, step=0.5, value=4.0, visible=DISABLE_VISIBILITY, label="Scheduler Value", info="Value unique to the scheduler mode - for Power Up/Down, this is the power. For Linear/Cosine Repeating, this is the number of repeats per image.", elem_id='dynthres_sched_val')
with gr.Row():
separate_feature_channels = gr.Checkbox(value=True, label="Separate Feature Channels", elem_id='dynthres_separate_feature_channels')
scaling_startpoint = gr.Radio(["ZERO", "MEAN"], value="MEAN", label="Scaling Startpoint")
variability_measure = gr.Radio(["STD", "AD"], value="AD", label="Variability Measure")
def should_show_scheduler_value(cfg_mode, mimic_mode):
sched_vis = cfg_mode in MODES_WITH_VALUE or mimic_mode in MODES_WITH_VALUE or DISABLE_VISIBILITY
return vis_change(sched_vis), vis_change(mimic_mode != "Constant" or DISABLE_VISIBILITY), vis_change(cfg_mode != "Constant" or DISABLE_VISIBILITY)
cfg_mode.change(should_show_scheduler_value, inputs=[cfg_mode, mimic_mode], outputs=[sched_val, mimic_scale_min, cfg_scale_min])
mimic_mode.change(should_show_scheduler_value, inputs=[cfg_mode, mimic_mode], outputs=[sched_val, mimic_scale_min, cfg_scale_min])
enabled.change(
_js="dynthres_update_enabled",
fn=None,
inputs=[enabled, dtrue if is_img2img else dfalse],
show_progress = False)
self.infotext_fields = (
(enabled, lambda d: gr.Checkbox.update(value="Dynamic thresholding enabled" in d)),
(mimic_scale, "Mimic scale"),
(separate_feature_channels, "Separate Feature Channels"),
(scaling_startpoint, lambda d: gr.Radio.update(value=d.get("Scaling Startpoint", "MEAN"))),
(variability_measure, lambda d: gr.Radio.update(value=d.get("Variability Measure", "AD"))),
(interpolate_phi, "Interpolate Phi"),
(threshold_percentile, "Threshold percentile"),
(mimic_scale_min, "Mimic scale minimum"),
(mimic_mode, lambda d: gr.Dropdown.update(value=d.get("Mimic mode", "Constant"))),
(cfg_mode, lambda d: gr.Dropdown.update(value=d.get("CFG mode", "Constant"))),
(cfg_scale_min, "CFG scale minimum"),
(sched_val, "Scheduler value"))
return [enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi]
last_id = 0
def process_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi, batch_number, prompts, seeds, subseeds):
enabled = getattr(p, 'dynthres_enabled', enabled)
if not enabled:
return
orig_sampler_name = p.sampler_name
orig_latent_sampler_name = getattr(p, 'latent_sampler', None)
if orig_sampler_name in ["DDIM", "PLMS"]:
raise RuntimeError(f"Cannot use sampler {orig_sampler_name} with Dynamic Thresholding")
if orig_latent_sampler_name in ["DDIM", "PLMS"]:
raise RuntimeError(f"Cannot use secondary sampler {orig_latent_sampler_name} with Dynamic Thresholding")
if 'UniPC' in (orig_sampler_name, orig_latent_sampler_name) and p.enable_hr:
raise RuntimeError(f"UniPC does not support Hires Fix. Auto WebUI silently swaps to DDIM for this, which DynThresh does not support. Please swap to a sampler capable of img2img processing for HR Fix to work.")
mimic_scale = getattr(p, 'dynthres_mimic_scale', mimic_scale)
separate_feature_channels = getattr(p, 'dynthres_separate_feature_channels', separate_feature_channels)
scaling_startpoint = getattr(p, 'dynthres_scaling_startpoint', scaling_startpoint)
variability_measure = getattr(p, 'dynthres_variability_measure', variability_measure)
interpolate_phi = getattr(p, 'dynthres_interpolate_phi', interpolate_phi)
threshold_percentile = getattr(p, 'dynthres_threshold_percentile', threshold_percentile)
mimic_mode = getattr(p, 'dynthres_mimic_mode', mimic_mode)
mimic_scale_min = getattr(p, 'dynthres_mimic_scale_min', mimic_scale_min)
cfg_mode = getattr(p, 'dynthres_cfg_mode', cfg_mode)
cfg_scale_min = getattr(p, 'dynthres_cfg_scale_min', cfg_scale_min)
experiment_mode = getattr(p, 'dynthres_experiment_mode', 0)
sched_val = getattr(p, 'dynthres_scheduler_val', sched_val)
p.extra_generation_params["Dynamic thresholding enabled"] = True
p.extra_generation_params["Mimic scale"] = mimic_scale
p.extra_generation_params["Separate Feature Channels"] = separate_feature_channels
p.extra_generation_params["Scaling Startpoint"] = scaling_startpoint
p.extra_generation_params["Variability Measure"] = variability_measure
p.extra_generation_params["Interpolate Phi"] = interpolate_phi
p.extra_generation_params["Threshold percentile"] = threshold_percentile
p.extra_generation_params["Sampler"] = orig_sampler_name
if mimic_mode != "Constant":
p.extra_generation_params["Mimic mode"] = mimic_mode
p.extra_generation_params["Mimic scale minimum"] = mimic_scale_min
if cfg_mode != "Constant":
p.extra_generation_params["CFG mode"] = cfg_mode
p.extra_generation_params["CFG scale minimum"] = cfg_scale_min
if cfg_mode in MODES_WITH_VALUE or mimic_mode in MODES_WITH_VALUE:
p.extra_generation_params["Scheduler value"] = sched_val
# Note: the ID number is to protect the edge case of multiple simultaneous runs with different settings
Script.last_id += 1
# Percentage to portion
threshold_percentile *= 0.01
def make_sampler(orig_sampler_name):
fixed_sampler_name = f"{orig_sampler_name}_dynthres{Script.last_id}"
# Make a placeholder sampler
sampler = sd_samplers.all_samplers_map[orig_sampler_name]
dt_data = dynthres_core.DynThresh(mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, experiment_mode, p.steps, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi)
if orig_sampler_name == "UniPC":
def unipc_constructor(model):
return CustomVanillaSDSampler(dynthres_unipc.CustomUniPCSampler, model, dt_data)
new_sampler = sd_samplers_common.SamplerData(fixed_sampler_name, unipc_constructor, sampler.aliases, sampler.options)
else:
def new_constructor(model):
result = sampler.constructor(model)
cfg = CustomCFGDenoiser(result if IS_AUTO_16 else result.model_wrap_cfg.inner_model, dt_data)
result.model_wrap_cfg = cfg
return result
new_sampler = sd_samplers_common.SamplerData(fixed_sampler_name, new_constructor, sampler.aliases, sampler.options)
return fixed_sampler_name, new_sampler
# Apply for usage
p.orig_sampler_name = orig_sampler_name
p.orig_latent_sampler_name = orig_latent_sampler_name
p.fixed_samplers = []
if orig_latent_sampler_name:
latent_sampler_name, latent_sampler = make_sampler(orig_latent_sampler_name)
sd_samplers.all_samplers_map[latent_sampler_name] = latent_sampler
p.fixed_samplers.append(latent_sampler_name)
p.latent_sampler = latent_sampler_name
if orig_sampler_name != orig_latent_sampler_name:
p.sampler_name, new_sampler = make_sampler(orig_sampler_name)
sd_samplers.all_samplers_map[p.sampler_name] = new_sampler
p.fixed_samplers.append(p.sampler_name)
else:
p.sampler_name = p.latent_sampler
if p.sampler is not None:
p.sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
def postprocess_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi, batch_number, images):
if not enabled or not hasattr(p, 'orig_sampler_name'):
return
p.sampler_name = p.orig_sampler_name
if p.orig_latent_sampler_name:
p.latent_sampler = p.orig_latent_sampler_name
for added_sampler in p.fixed_samplers:
del sd_samplers.all_samplers_map[added_sampler]
del p.fixed_samplers
del p.orig_sampler_name
del p.orig_latent_sampler_name
######################### CompVis Implementation logic #########################
class CustomVanillaSDSampler(sd_samplers_compvis.VanillaStableDiffusionSampler):
def __init__(self, constructor, sd_model, dt_data):
super().__init__(constructor, sd_model)
self.sampler.main_class = dt_data
######################### K-Diffusion Implementation logic #########################
class CustomCFGDenoiser(cfgdenoisekdiff):
def __init__(self, model, dt_data):
super().__init__(model)
self.main_class = dt_data
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
if isinstance(uncond, dict) and 'crossattn' in uncond:
uncond = uncond['crossattn']
denoised_uncond = x_out[-uncond.shape[0]:]
# conds_list shape is (batch, cond, 2)
weights = torch.tensor(conds_list, device=uncond.device).select(2, 1)
weights = weights.reshape(*weights.shape, 1, 1, 1)
self.main_class.step = self.step
if hasattr(self, 'total_steps'):
self.main_class.max_steps = self.total_steps
if self.main_class.experiment_mode >= 4 and self.main_class.experiment_mode <= 5:
# https://arxiv.org/pdf/2305.08891.pdf "Rescale CFG". It's not good, but if you want to test it, just set experiment_mode = 4 + phi.
denoised = torch.clone(denoised_uncond)
fi = self.main_class.experiment_mode - 4.0
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
xcfg = (denoised_uncond[i] + (x_out[cond_index] - denoised_uncond[i]) * (cond_scale * weight))
xrescaled = xcfg * (torch.std(x_out[cond_index]) / torch.std(xcfg))
xfinal = fi * xrescaled + (1.0 - fi) * xcfg
denoised[i] = xfinal
return denoised
return self.main_class.dynthresh(x_out[:-uncond.shape[0]], denoised_uncond, cond_scale, weights)
######################### XYZ Plot Script Support logic #########################
def make_axis_options():
xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ in ("xyz_grid.py", "scripts.xyz_grid")][0].module
def apply_mimic_scale(p, x, xs):
if x != 0:
setattr(p, "dynthres_enabled", True)
setattr(p, "dynthres_mimic_scale", x)
else:
setattr(p, "dynthres_enabled", False)
def confirm_scheduler(p, xs):
for x in xs:
if x not in dynthres_core.DynThresh.Modes:
raise RuntimeError(f"Unknown Scheduler: {x}")
extra_axis_options = [
xyz_grid.AxisOption("[DynThres] Mimic Scale", float, apply_mimic_scale),
xyz_grid.AxisOption("[DynThres] Separate Feature Channels", int,
xyz_grid.apply_field("dynthres_separate_feature_channels")),
xyz_grid.AxisOption("[DynThres] Scaling Startpoint", str, xyz_grid.apply_field("dynthres_scaling_startpoint"), choices=lambda:['ZERO', 'MEAN']),
xyz_grid.AxisOption("[DynThres] Variability Measure", str, xyz_grid.apply_field("dynthres_variability_measure"), choices=lambda:['STD', 'AD']),
xyz_grid.AxisOption("[DynThres] Interpolate Phi", float, xyz_grid.apply_field("dynthres_interpolate_phi")),
xyz_grid.AxisOption("[DynThres] Threshold Percentile", float, xyz_grid.apply_field("dynthres_threshold_percentile")),
xyz_grid.AxisOption("[DynThres] Mimic Scheduler", str, xyz_grid.apply_field("dynthres_mimic_mode"), confirm=confirm_scheduler, choices=lambda: dynthres_core.DynThresh.Modes),
xyz_grid.AxisOption("[DynThres] Mimic minimum", float, xyz_grid.apply_field("dynthres_mimic_scale_min")),
xyz_grid.AxisOption("[DynThres] CFG Scheduler", str, xyz_grid.apply_field("dynthres_cfg_mode"), confirm=confirm_scheduler, choices=lambda: dynthres_core.DynThresh.Modes),
xyz_grid.AxisOption("[DynThres] CFG minimum", float, xyz_grid.apply_field("dynthres_cfg_scale_min")),
xyz_grid.AxisOption("[DynThres] Scheduler value", float, xyz_grid.apply_field("dynthres_scheduler_val"))
]
if not any("[DynThres]" in x.label for x in xyz_grid.axis_options):
xyz_grid.axis_options.extend(extra_axis_options)
def callback_before_ui():
try:
make_axis_options()
except Exception as e:
traceback.print_exc()
print(f"Failed to add support for X/Y/Z Plot Script because: {e}")
script_callbacks.on_before_ui(callback_before_ui)
|