File size: 5,512 Bytes
c336648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import torch
import torch.nn as nn
import numpy as np
import argparse
import random
from PIL import Image
from tqdm import tqdm
from safetensors.torch import save_file, load_file
from torch.utils.data import DataLoader, Dataset

from upscaler import LatentUpscaler as Upscaler
from vae import get_vae

torch.backends.cudnn.benchmark = True

def parse_args():
	parser = argparse.ArgumentParser(description="Train latent interposer model")
	parser.add_argument("--steps", type=int, default=500000, help="No. of training steps")
	parser.add_argument('--bs', type=int, default=4, help="Batch size")
	parser.add_argument('--lr', default="5e-4", help="Learning rate")
	parser.add_argument("-n", "--save_every_n", type=int, dest="save", default=50000, help="Save model/sample periodically")
	parser.add_argument("-r", "--res", type=int, default=512, help="Source resolution")
	parser.add_argument("-f", "--fac", type=float, default=1.5, help="Upscale factor")
	parser.add_argument("-v", "--ver", choices=["v1","xl"], default="v1", help="SD version")
	parser.add_argument('--vae', help="Path to VAE (Optional)")
	parser.add_argument('--resume', help="Checkpoint to resume from")
	args = parser.parse_args()
	try:
		float(args.lr)
	except:
		parser.error("--lr must be a valid float eg. 0.001 or 1e-3")
	return args

vae = None
def sample_decode(latent, filename, version):
	global vae
	if not vae:
		vae = get_vae(version, fp16=True)
		vae.to("cuda")

	latent = latent.half().to("cuda")
	out = vae.decode(latent).sample
	out = out.cpu().detach().numpy()
	out = np.squeeze(out, 0)
	out = out.transpose((1, 2, 0))
	out = np.clip(out, -1.0, 1.0)
	out = (out+1)/2 * 255
	out = out.astype(np.uint8)
	out = Image.fromarray(out)
	out.save(filename)

def eval_model(step, model, criterion, scheduler, src, dst):
	with torch.no_grad():
		t_pred = model(src)
		t_loss = criterion(t_pred, dst)
	tqdm.write(f"{str(step):<10} {loss.data.item():.4e}|{t_loss.data.item():.4e} @ {float(scheduler.get_last_lr()[0]):.4e}")
	log.write(f"{step},{loss.data.item()},{t_loss.data.item()},{float(scheduler.get_last_lr()[0])}\n")
	log.flush()

def save_model(step, model, ver, fac, src):
	out = model(src)
	output_name = f"./models/latent-upscaler_SD{ver}-x{fac}_e{round(step/1000)}k"
	sample_decode(out, f"{output_name}.png", ver)
	save_file(model.state_dict(), f"{output_name}.safetensors")

class Latent:
	def __init__(self, md5, ver, src_res, dst_res):
		src = os.path.join(f"latents/{ver}_{src_res}px", f"{md5}.npy")
		dst = os.path.join(f"latents/{ver}_{dst_res}px", f"{md5}.npy")
		self.src = torch.from_numpy(np.load(src)).to("cuda")
		self.dst = torch.from_numpy(np.load(dst)).to("cuda")
		self.src = torch.squeeze(self.src, 0)
		self.dst = torch.squeeze(self.dst, 0)

class LatentDataset(Dataset):
	def __init__(self, ver, src_res, dst_res):
		print("Loading latents from disk")
		self.latents = []
		for i in tqdm(os.listdir(f"latents/{ver}_{src_res}px")):
			md5 = os.path.splitext(i)[0]
			self.latents.append(
				Latent(md5, ver, src_res, dst_res)
			)

	def __len__(self):
		return len(self.latents)

	def __getitem__(self, index):
		return (
			self.latents[index].src,
			self.latents[index].dst,
		)

if __name__ == "__main__":
	args = parse_args()
	target_dev = "cuda"
	dst_res = int(args.res*args.fac)

	dataset = LatentDataset(args.ver, args.res, dst_res)
	loader = DataLoader(
		dataset,
		batch_size=args.bs,
		shuffle=True,
		num_workers=0,
	)	

	if not os.path.isdir("models"): os.mkdir("models")
	log = open(f"models/latent-upscaler_SD{args.ver}-x{args.fac}.csv", "w")

	if os.path.isfile(f"test_{args.ver}_{args.res}px.npy") and os.path.isfile(f"test_{args.ver}_{dst_res}px.npy"):
		eval_src = torch.from_numpy(np.load(f"test_{args.ver}_{args.res}px.npy")).to(target_dev)
		eval_dst = torch.from_numpy(np.load(f"test_{args.ver}_{dst_res}px.npy")).to(target_dev)
	else:
		eval_src = torch.unsqueeze(dataset[0][0],0)
		eval_dst = torch.unsqueeze(dataset[0][1],0)

	model = Upscaler(args.fac)
	if args.resume:
		model.load_state_dict(load_file(args.resume))
	model.to(target_dev)

	# criterion = torch.nn.MSELoss()
	criterion = torch.nn.L1Loss()

	# optimizer = torch.optim.SGD(model.parameters(), lr=float(args.lr)/args.bs)
	optimizer = torch.optim.AdamW(model.parameters(), lr=float(args.lr)/args.bs)

	scheduler = torch.optim.lr_scheduler.OneCycleLR(
		optimizer,
		total_steps=int(args.steps/args.bs),
		max_lr=float(args.lr)/args.bs,
		pct_start=0.015,
		final_div_factor=2500,
	)
	# scaler = torch.cuda.amp.GradScaler()
	progress = tqdm(total=args.steps)

	while progress.n < args.steps:
		for src, dst in loader:
			with torch.cuda.amp.autocast():
				y_pred = model(src) # forward
				loss = criterion(y_pred, dst) # loss

			# backward
			optimizer.zero_grad()
			loss.backward()
			optimizer.step()
			scheduler.step()

			# eval/save
			progress.update(args.bs)
			if progress.n % (1000 + 1000%args.bs) == 0:
				eval_model(progress.n, model, criterion, scheduler, eval_src, eval_dst)
			if progress.n % (args.save + args.save%args.bs) == 0:
				save_model(progress.n, model, args.ver, args.fac, eval_src)
			if progress.n >= args.steps:
				break
	progress.close()

	# save final output
	eval_model(args.steps, model, criterion, scheduler, eval_src, eval_dst)
	save_model(args.steps, model, args.ver, args.fac, eval_src)
	log.close()