File size: 4,130 Bytes
c336648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""

import argparse
import os

import numpy as np
import torch as th
import torch.distributed as dist
import yaml

from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
    NUM_CLASSES,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    add_dict_to_argparser,
    args_to_dict,
    sag_defaults,
)
import datetime

def get_datetime():
    UTC = datetime.timezone(datetime.timedelta(hours=0))
    date = datetime.datetime.now(UTC).strftime("%Y_%m_%d-%I%M%S_%p")
    return date

def main():
    args = create_argparser().parse_args()
    save_name = f"{get_datetime()}"
    dist_util.setup_dist()
    logger.configure(dir=f'RESULTS/{save_name}')

    with open(os.path.join(logger.get_dir(), 'config.yaml'), 'w') as f:
        yaml.dump(args.__dict__, f)

    logger.log("creating model and diffusion...")
    model, diffusion = create_model_and_diffusion(
        sel_attn_depth=args.sel_attn_depth,
        sel_attn_block=args.sel_attn_block,
        **args_to_dict(args, model_and_diffusion_defaults().keys())
    )
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu")
    )
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    logger.log("sampling...")
    all_images = []
    all_labels = []
    guidance_kwargs = {}
    guidance_kwargs["guide_start"] = args.guide_start
    guidance_kwargs["guide_scale"] = args.guide_scale
    guidance_kwargs["blur_sigma"] = args.blur_sigma

    while len(all_images) * args.batch_size < args.num_samples:
        model_kwargs = {}
        if args.class_cond:
            classes = th.randint(
                low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
            )
            model_kwargs["y"] = classes
        sample_fn = (
            diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
        )
        sample = sample_fn(
            model,
            (args.batch_size, 3, args.image_size, args.image_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
            guidance_kwargs=guidance_kwargs
        )
        sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
        sample = sample.permute(0, 2, 3, 1)
        sample = sample.contiguous()

        gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
        dist.all_gather(gathered_samples, sample)  # gather not supported with NCCL
        all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
        if args.class_cond:
            gathered_labels = [
                th.zeros_like(classes) for _ in range(dist.get_world_size())
            ]
            dist.all_gather(gathered_labels, classes)
            all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
        logger.log(f"created {len(all_images) * args.batch_size} samples")

    arr = np.concatenate(all_images, axis=0)
    arr = arr[: args.num_samples]
    if args.class_cond:
        label_arr = np.concatenate(all_labels, axis=0)
        label_arr = label_arr[: args.num_samples]
    if dist.get_rank() == 0:
        shape_str = "x".join([str(x) for x in arr.shape])
        out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
        logger.log(f"saving to {out_path}")
        if args.class_cond:
            np.savez(out_path, arr, label_arr)
        else:
            np.savez(out_path, arr)

    dist.barrier()
    logger.log("sampling complete")


def create_argparser():
    defaults = dict(
        clip_denoised=True,
        num_samples=10000,
        batch_size=16,
        use_ddim=False,
        model_path="",
    )
    defaults.update(model_and_diffusion_defaults())
    defaults.update(sag_defaults())
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser


if __name__ == "__main__":
    main()