File size: 4,852 Bytes
c336648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import tqdm
import k_diffusion.sampling
from modules import sd_samplers_common, sd_samplers_kdiffusion, sd_samplers
from tqdm.auto import trange, tqdm
from k_diffusion import utils
from k_diffusion.sampling import to_d
import math
from importlib import import_module

sampling = import_module("k_diffusion.sampling")
NAME = 'Euler_Negative'
ALIAS = 'euler_negative'



# sampler

class _Rescaler:
    def __init__(self, model, x, mode, **extra_args):
        self.model = model
        self.x = x
        self.mode = mode
        self.extra_args = extra_args
        self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask

    def __enter__(self):
        if self.init_latent is not None:
            self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
        if self.mask is not None:
            self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
        if self.nmask is not None:
            self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)

        return self

    def __exit__(self, type, value, traceback):
        del self.model.init_latent, self.model.mask, self.model.nmask
        self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask


@torch.no_grad()
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
    original_shape = x.shape
    batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
    extra_row = x.shape[2] % 2 == 1
    extra_col = x.shape[3] % 2 == 1

    if extra_row:
        extra_row_content = x[:, :, -1:, :]
        x = x[:, :, :-1, :]
    if extra_col:
        extra_col_content = x[:, :, :, -1:]
        x = x[:, :, :, :-1]

    a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
    c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)

    with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
        denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
    d = sampling.to_d(c, sigma_hat, denoised)
    c = c + d * dt

    d_list = c.view(batch_size, channels, m * n, 1, 1)
    a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
    x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)

    if extra_row or extra_col:
        x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
        x_expanded[:, :, :2 * m, :2 * n] = x
        if extra_row:
            x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
        if extra_col:
            x_expanded[:, :, :2 * m, -1:] = extra_col_content
        if extra_row and extra_col:
            x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
        x = x_expanded

    return x


@torch.no_grad()
def sample_euler_negative(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0.,
                               s_tmax=float('inf'), s_noise=1.):
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        # print(i)
        # i第一步为0
        gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        # print(sigma_hat)
        dt = sigmas[i + 1] - sigma_hat
        if gamma > 0:
            x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = sampling.to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        # Euler method
        if sigmas[i + 1] > 0 and i // 2 == 1:
            x = - x - d * dt
        else:
            x = x + d * dt
    return x



# add sampler
if not NAME in [x.name for x in sd_samplers.all_samplers]:
    euler_max_samplers = [(NAME, sample_euler_negative, [ALIAS], {})]
    samplers_data_euler_max_samplers = [
        sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: sd_samplers_kdiffusion.KDiffusionSampler(funcname, model), aliases, options)
        for label, funcname, aliases, options in euler_max_samplers
        if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
    ]
    sd_samplers.all_samplers += samplers_data_euler_max_samplers
    sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers}
    sd_samplers.set_samplers()