|
import gradio as gr |
|
import torch |
|
import math |
|
import traceback |
|
from modules import shared |
|
try: |
|
from modules.models.diffusion import uni_pc |
|
except Exception as e: |
|
from modules import unipc as uni_pc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CustomUniPCSampler(uni_pc.sampler.UniPCSampler): |
|
def __init__(self, model, **kwargs): |
|
super().__init__(model, *kwargs) |
|
@torch.no_grad() |
|
def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, |
|
quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, |
|
corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, **kwargs): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
ctmp = conditioning[list(conditioning.keys())[0]] |
|
while isinstance(ctmp, list): ctmp = ctmp[0] |
|
cbs = ctmp.shape[0] |
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
|
|
elif isinstance(conditioning, list): |
|
for ctmp in conditioning: |
|
if ctmp.shape[0] != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
device = self.model.betas.device |
|
if x_T is None: |
|
img = torch.randn(size, device=device) |
|
else: |
|
img = x_T |
|
ns = uni_pc.uni_pc.NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) |
|
model_type = "v" if self.model.parameterization == "v" else "noise" |
|
model_fn = CustomUniPC_model_wrapper(lambda x, t, c: self.model.apply_model(x, t, c), ns, model_type=model_type, guidance_scale=unconditional_guidance_scale, dt_data=self.main_class) |
|
self.main_class.step = 0 |
|
def before_sample(x, t, cond, uncond): |
|
self.main_class.step += 1 |
|
return self.before_sample(x, t, cond, uncond) |
|
uni_pc_inst = uni_pc.uni_pc.UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=before_sample, after_sample=self.after_sample, after_update=self.after_update) |
|
x = uni_pc_inst.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) |
|
return x.to(device), None |
|
|
|
def CustomUniPC_model_wrapper(model, noise_schedule, model_type="noise", model_kwargs={}, guidance_scale=1.0, dt_data=None): |
|
def expand_dims(v, dims): |
|
return v[(...,) + (None,)*(dims - 1)] |
|
def get_model_input_time(t_continuous): |
|
return (t_continuous - 1. / noise_schedule.total_N) * 1000. |
|
def noise_pred_fn(x, t_continuous, cond=None): |
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
t_input = get_model_input_time(t_continuous) |
|
if cond is None: |
|
output = model(x, t_input, None, **model_kwargs) |
|
else: |
|
output = model(x, t_input, cond, **model_kwargs) |
|
if model_type == "noise": |
|
return output |
|
elif model_type == "v": |
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
dims = x.dim() |
|
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x |
|
def model_fn(x, t_continuous, condition, unconditional_condition): |
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
if guidance_scale == 1. or unconditional_condition is None: |
|
return noise_pred_fn(x, t_continuous, cond=condition) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t_continuous] * 2) |
|
if isinstance(condition, dict): |
|
assert isinstance(unconditional_condition, dict) |
|
c_in = dict() |
|
for k in condition: |
|
if isinstance(condition[k], list): |
|
c_in[k] = [torch.cat([ |
|
unconditional_condition[k][i], |
|
condition[k][i]]) for i in range(len(condition[k]))] |
|
else: |
|
c_in[k] = torch.cat([ |
|
unconditional_condition[k], |
|
condition[k]]) |
|
elif isinstance(condition, list): |
|
c_in = list() |
|
assert isinstance(unconditional_condition, list) |
|
for i in range(len(condition)): |
|
c_in.append(torch.cat([unconditional_condition[i], condition[i]])) |
|
else: |
|
c_in = torch.cat([unconditional_condition, condition]) |
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) |
|
|
|
return dt_data.dynthresh(noise, noise_uncond, guidance_scale, None) |
|
return model_fn |
|
|