dikdimon's picture
Upload extensions using SD-Hub extension
c336648 verified
raw
history blame
9.76 kB
from importlib import import_module
from tqdm.auto import trange
import torch
sampling = None
BACKEND = None
INITIALIZED = False
if not BACKEND:
try:
_ = import_module("modules.sd_samplers_kdiffusion")
sampling = import_module("k_diffusion.sampling")
BACKEND = "WebUI"
except ImportError as _:
pass
if not BACKEND:
try:
sampling = import_module("comfy.k_diffusion.sampling")
BACKEND = "ComfyUI"
except ImportError as _:
pass
class _Rescaler:
def __init__(self, model, x, mode, **extra_args):
self.model = model
self.x = x
self.mode = mode
self.extra_args = extra_args
if BACKEND == "WebUI":
self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask
if BACKEND == "ComfyUI":
self.latent_image, self.noise = model.latent_image, model.noise
self.denoise_mask = self.extra_args.get("denoise_mask", None)
def __enter__(self):
if BACKEND == "WebUI":
if self.init_latent is not None:
self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode)
if self.mask is not None:
self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
if self.nmask is not None:
self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0)
if BACKEND == "ComfyUI":
if self.latent_image is not None:
self.model.latent_image = torch.nn.functional.interpolate(input=self.latent_image, size=self.x.shape[2:4], mode=self.mode)
if self.noise is not None:
self.model.noise = torch.nn.functional.interpolate(input=self.latent_image, size=self.x.shape[2:4], mode=self.mode)
if self.denoise_mask is not None:
self.extra_args["denoise_mask"] = torch.nn.functional.interpolate(input=self.denoise_mask, size=self.x.shape[2:4], mode=self.mode)
return self
def __exit__(self, type, value, traceback):
if BACKEND == "WebUI":
del self.model.init_latent, self.model.mask, self.model.nmask
self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask
if BACKEND == "ComfyUI":
del self.model.latent_image, self.model.noise
self.model.latent_image, self.model.noise = self.latent_image, self.noise
@torch.no_grad()
def dy_sampling_step(x, model, dt, sigma_hat, **extra_args):
original_shape = x.shape
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2
extra_row = x.shape[2] % 2 == 1
extra_col = x.shape[3] % 2 == 1
if extra_row:
extra_row_content = x[:, :, -1:, :]
x = x[:, :, :-1, :]
if extra_col:
extra_col_content = x[:, :, :, -1:]
x = x[:, :, :, :-1]
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2)
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler:
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
d = sampling.to_d(c, sigma_hat, denoised)
c = c + d * dt
d_list = c.view(batch_size, channels, m * n, 1, 1)
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n)
if extra_row or extra_col:
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
x_expanded[:, :, :2 * m, :2 * n] = x
if extra_row:
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content
if extra_col:
x_expanded[:, :, :2 * m, -1:] = extra_col_content
if extra_row and extra_col:
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
x = x_expanded
return x
@torch.no_grad()
def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0.,
s_tmax=float('inf'), s_noise=1.):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
# print(i)
# i第一步为0
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
# print(sigma_hat)
dt = sigmas[i + 1] - sigma_hat
if gamma > 0:
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = sampling.to_d(x, sigma_hat, denoised)
if sigmas[i + 1] > 0:
if i // 2 == 1:
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
# Euler method
x = x + d * dt
return x
@torch.no_grad()
def smea_sampling_step(x, model, dt, sigma_hat, **extra_args):
m, n = x.shape[2], x.shape[3]
x = torch.nn.functional.interpolate(input=x, scale_factor=(1.25, 1.25), mode='nearest-exact')
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler:
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args)
d = sampling.to_d(x, sigma_hat, denoised)
x = x + d * dt
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact')
return x
@torch.no_grad()
def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0.,
s_tmax=float('inf'), s_noise=1.):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
dt = sigmas[i + 1] - sigma_hat
if gamma > 0:
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = sampling.to_d(x, sigma_hat, denoised)
# Euler method
x = x + d * dt
if sigmas[i + 1] > 0:
if i + 1 // 2 == 1:
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
if i + 1 // 2 == 0:
x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
return x
@torch.no_grad()
def sample_euler_negative(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0.,
s_tmax=float('inf'), s_noise=1.):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
# print(i)
# i第一步为0
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
# print(sigma_hat)
dt = sigmas[i + 1] - sigma_hat
if gamma > 0:
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = sampling.to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
# Euler method
if sigmas[i + 1] > 0 and i // 2 == 1:
x = - x - d * dt
else:
x = x + d * dt
return x
@torch.no_grad()
def sample_euler_dy_negative(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0.,
s_tmax=float('inf'), s_noise=1.):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
# print(i)
# i第一步为0
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
# print(sigma_hat)
dt = sigmas[i + 1] - sigma_hat
if gamma > 0:
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = sampling.to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
# Euler method
if sigmas[i + 1] > 0 and i // 2 == 1:
x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args)
x = - x - d * dt
else:
x = x + d * dt
return x