|
|
|
|
|
import torch |
|
import torch as th |
|
import torch.fft as fft |
|
import math |
|
|
|
def normalize(latent, target_min=None, target_max=None): |
|
""" |
|
Normalize a tensor `latent` between `target_min` and `target_max`. |
|
|
|
Args: |
|
latent (torch.Tensor): The input tensor to be normalized. |
|
target_min (float, optional): The minimum value after normalization. |
|
- When `None` min will be tensor min range value. |
|
target_max (float, optional): The maximum value after normalization. |
|
- When `None` max will be tensor max range value. |
|
|
|
Returns: |
|
torch.Tensor: The normalized tensor |
|
""" |
|
min_val = latent.min() |
|
max_val = latent.max() |
|
|
|
if target_min is None: |
|
target_min = min_val |
|
if target_max is None: |
|
target_max = max_val |
|
|
|
normalized = (latent - min_val) / (max_val - min_val) |
|
scaled = normalized * (target_max - target_min) + target_min |
|
return scaled |
|
|
|
def hslerp(a, b, t): |
|
""" |
|
Perform Hybrid Spherical Linear Interpolation (HSLERP) between two tensors. |
|
|
|
This function combines two input tensors `a` and `b` using HSLERP, which is a specialized |
|
interpolation method for smooth transitions between orientations or colors. |
|
|
|
Args: |
|
a (tensor): The first input tensor. |
|
b (tensor): The second input tensor. |
|
t (float): The blending factor, a value between 0 and 1 that controls the interpolation. |
|
|
|
Returns: |
|
tensor: The result of HSLERP interpolation between `a` and `b`. |
|
|
|
Note: |
|
HSLERP provides smooth transitions between orientations or colors, particularly useful |
|
in applications like image processing and 3D graphics. |
|
""" |
|
if a.shape != b.shape: |
|
raise ValueError("Input tensors a and b must have the same shape.") |
|
|
|
num_channels = a.size(1) |
|
|
|
interpolation_tensor = torch.zeros(1, num_channels, 1, 1, device=a.device, dtype=a.dtype) |
|
interpolation_tensor[0, 0, 0, 0] = 1.0 |
|
|
|
result = (1 - t) * a + t * b |
|
|
|
if t < 0.5: |
|
result += (torch.norm(b - a, dim=1, keepdim=True) / 6) * interpolation_tensor |
|
else: |
|
result -= (torch.norm(b - a, dim=1, keepdim=True) / 6) * interpolation_tensor |
|
|
|
return result |
|
|
|
blending_modes = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
'bislerp': lambda a, b, t: normalize((1 - t) * a + t * b), |
|
|
|
'colorize': lambda a, b, t: a + (b - a) * t, |
|
|
|
'cosine interp': lambda a, b, t: (a + b - (a - b) * torch.cos(t * torch.tensor(math.pi))) / 2, |
|
|
|
'cuberp': lambda a, b, t: a + (b - a) * (3 * t ** 2 - 2 * t ** 3), |
|
|
|
|
|
'hslerp': hslerp, |
|
|
|
'inject': lambda a, b, t: a + b * t, |
|
|
|
'lerp': lambda a, b, t: (1 - t) * a + t * b, |
|
|
|
'linear dodge': lambda a, b, t: normalize(a + b * t), |
|
} |
|
|
|
mscales = { |
|
"Default": None, |
|
"Bandpass": [ |
|
(5, 0.0), |
|
(15, 1.0), |
|
(25, 0.0), |
|
], |
|
"Low-Pass": [ |
|
(10, 1.0), |
|
], |
|
"High-Pass": [ |
|
(10, 0.0), |
|
], |
|
"Pass-Through": [ |
|
(10, 1.0), |
|
], |
|
"Gaussian-Blur": [ |
|
(10, 0.5), |
|
], |
|
"Edge-Enhancement": [ |
|
(10, 2.0), |
|
], |
|
"Sharpen": [ |
|
(10, 1.5), |
|
], |
|
"Multi-Bandpass": [ |
|
[(5, 0.0), (15, 1.0), (25, 0.0)], |
|
], |
|
"Multi-Low-Pass": [ |
|
[(5, 1.0), (10, 0.5), (15, 0.2)], |
|
], |
|
"Multi-High-Pass": [ |
|
[(5, 0.0), (10, 0.5), (15, 0.8)], |
|
], |
|
"Multi-Pass-Through": [ |
|
[(5, 1.0), (10, 1.0), (15, 1.0)], |
|
], |
|
"Multi-Gaussian-Blur": [ |
|
[(5, 0.5), (10, 0.8), (15, 0.2)], |
|
], |
|
"Multi-Edge-Enhancement": [ |
|
[(5, 1.2), (10, 1.5), (15, 2.0)], |
|
], |
|
"Multi-Sharpen": [ |
|
[(5, 1.5), (10, 2.0), (15, 2.5)], |
|
], |
|
} |
|
|
|
|
|
|
|
def __temp__forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param context: conditioning plugged in via crossattn |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
transformer_options["original_shape"] = list(x.shape) |
|
transformer_options["transformer_index"] = 0 |
|
transformer_patches = transformer_options.get("patches", {}) |
|
|
|
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) |
|
image_only_indicator = kwargs.get("image_only_indicator", getattr(self, "default_image_only_indicator", None)) |
|
time_context = kwargs.get("time_context", None) |
|
|
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
hs = [] |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for id, module in enumerate(self.input_blocks): |
|
transformer_options["block"] = ("input", id) |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'input') |
|
if "input_block_patch" in transformer_patches: |
|
patch = transformer_patches["input_block_patch"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
hs.append(h) |
|
if "input_block_patch_after_skip" in transformer_patches: |
|
patch = transformer_patches["input_block_patch_after_skip"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
transformer_options["block"] = ("middle", 0) |
|
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'middle') |
|
|
|
if "middle_block_patch" in transformer_patches: |
|
patch = transformer_patches["middle_block_patch"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
for id, module in enumerate(self.output_blocks): |
|
transformer_options["block"] = ("output", id) |
|
hsp = hs.pop() |
|
hsp = apply_control(hsp, control, 'output') |
|
|
|
if "output_block_patch" in transformer_patches: |
|
patch = transformer_patches["output_block_patch"] |
|
for p in patch: |
|
h, hsp = p(h, hsp, transformer_options) |
|
|
|
h = th.cat([h, hsp], dim=1) |
|
del hsp |
|
if len(hs) > 0: |
|
output_shape = hs[-1].shape |
|
else: |
|
output_shape = None |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = h.type(x.dtype) |
|
if self.predict_codebook_ids: |
|
return self.id_predictor(h) |
|
else: |
|
return self.out(h) |
|
|
|
print("Patching UNetModel.forward") |
|
import comfy.ldm.modules.diffusionmodules.openaimodel |
|
from comfy.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control |
|
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding |
|
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = __temp__forward |
|
if comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward is __temp__forward: |
|
print("UNetModel.forward has been successfully patched.") |
|
else: |
|
print("UNetModel.forward patching failed.") |
|
|
|
def Fourier_filter(x, threshold, scale, scales=None, strength=1.0): |
|
|
|
if isinstance(x, list): |
|
x = x[0] |
|
if isinstance(x, torch.Tensor): |
|
x_freq = fft.fftn(x.float(), dim=(-2, -1)) |
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) |
|
|
|
B, C, H, W = x_freq.shape |
|
mask = torch.ones((B, C, H, W), device=x.device) |
|
|
|
crow, ccol = H // 2, W // 2 |
|
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale |
|
|
|
if scales is not None: |
|
if isinstance(scales[0], tuple): |
|
|
|
for scale_params in scales: |
|
if len(scale_params) == 2: |
|
scale_threshold, scale_value = scale_params |
|
scaled_scale_value = scale_value * strength |
|
scale_mask = torch.ones((B, C, H, W), device=x.device) |
|
scale_mask[..., crow - scale_threshold:crow + scale_threshold, ccol - scale_threshold:ccol + scale_threshold] = scaled_scale_value |
|
mask = mask + (scale_mask - mask) * strength |
|
else: |
|
|
|
for scale_params in scales: |
|
if isinstance(scale_params, list): |
|
for scale_tuple in scale_params: |
|
if len(scale_tuple) == 2: |
|
scale_threshold, scale_value = scale_tuple |
|
scaled_scale_value = scale_value * strength |
|
scale_mask = torch.ones((B, C, H, W), device=x.device) |
|
scale_mask[..., crow - scale_threshold:crow + scale_threshold, ccol - scale_threshold:ccol + scale_threshold] = scaled_scale_value |
|
mask = mask + (scale_mask - mask) * strength |
|
|
|
x_freq = x_freq * mask |
|
|
|
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
return x_filtered.to(x.dtype) |
|
|
|
return x |
|
|
|
class WAS_FreeU: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"model": ("MODEL",), |
|
"target_block": (["output_block", "middle_block", "input_block", "all"],), |
|
"multiscale_mode": (list(mscales.keys()),), |
|
"multiscale_strength": ("FLOAT", {"default": 1.0, "max": 1.0, "min": 0, "step": 0.001}), |
|
"slice_b1": ("INT", {"default": 640, "min": 64, "max": 1280, "step": 1}), |
|
"slice_b2": ("INT", {"default": 320, "min": 64, "max": 640, "step": 1}), |
|
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
}, |
|
"optional": { |
|
"b1_mode": (list(blending_modes.keys()),), |
|
"b1_blend": ("FLOAT", {"default": 1.0, "max": 100, "min": 0, "step": 0.001}), |
|
"b2_mode": (list(blending_modes.keys()),), |
|
"b2_blend": ("FLOAT", {"default": 1.0, "max": 100, "min": 0, "step": 0.001}), |
|
"threshold": ("INT", {"default": 1.0, "max": 10, "min": 1, "step": 1}), |
|
"use_override_scales": (["false", "true"],), |
|
"override_scales": ("STRING", {"default": '''# OVERRIDE SCALES |
|
|
|
# Sharpen |
|
# 10, 1.5''', "multiline": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def patch(self, model, target_block, multiscale_mode, multiscale_strength, slice_b1, slice_b2, b1, b2, s1, s2, b1_mode="add", b1_blend=1.0, b2_mode="add", b2_blend=1.0, threshold=1.0, use_override_scales="false", override_scales=""): |
|
|
|
min_slice = 64 |
|
max_slice_b1 = 1280 |
|
max_slice_b2 = 640 |
|
slice_b1 = max(min(max_slice_b1, slice_b1), min_slice) |
|
slice_b2 = max(min(min(slice_b1, max_slice_b2), slice_b2), min_slice) |
|
|
|
scales_list = [] |
|
if use_override_scales == "true": |
|
if override_scales.strip() != "": |
|
scales_str = override_scales.strip().splitlines() |
|
for line in scales_str: |
|
if not line.strip().startswith('#') and not line.strip().startswith('!') and not line.strip().startswith('//'): |
|
scale_values = line.split(',') |
|
if len(scale_values) == 2: |
|
scales_list.append((int(scale_values[0]), float(scale_values[1]))) |
|
|
|
if use_override_scales == "true" and not scales_list: |
|
print("No valid override scales found. Using default scale.") |
|
scales_list = None |
|
|
|
scales = mscales[multiscale_mode] if use_override_scales == "false" else scales_list |
|
|
|
print(f"FreeU Plate Portions: {slice_b1} over {slice_b2}") |
|
print(f"FreeU Multi-Scales: {scales}") |
|
|
|
def block_patch(h, transformer_options): |
|
if h.shape[1] == 1280: |
|
h_t = h[:,:slice_b1] |
|
h_r = h_t * b1 |
|
h[:,:slice_b1] = blending_modes[b1_mode](h_t, h_r, b1_blend) |
|
if h.shape[1] == 640: |
|
h_t = h[:,:slice_b2] |
|
h_r = h_t * b2 |
|
h[:,:slice_b2] = blending_modes[b2_mode](h_t, h_r, b2_blend) |
|
return h |
|
|
|
def block_patch_hsp(h, hsp, transformer_options): |
|
if h.shape[1] == 1280: |
|
h = block_patch(h, transformer_options) |
|
hsp = Fourier_filter(hsp, threshold=threshold, scale=s1, scales=scales, strength=multiscale_strength) |
|
if h.shape[1] == 640: |
|
h = block_patch(h, transformer_options) |
|
hsp = Fourier_filter(hsp, threshold=threshold, scale=s2, scales=scales, strength=multiscale_strength) |
|
return h, hsp |
|
|
|
print(f"Patching {target_block}") |
|
|
|
m = model.clone() |
|
if target_block == "all" or target_block == "output_block": |
|
m.set_model_output_block_patch(block_patch_hsp) |
|
if target_block == "all" or target_block == "input_block": |
|
m.set_model_input_block_patch(block_patch) |
|
if target_block == "all" or target_block == "middle_block": |
|
m.set_model_patch(block_patch, "middle_block_patch") |
|
return (m, ) |
|
|
|
class WAS_FreeU_V2: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"model": ("MODEL",), |
|
"input_block": ("BOOLEAN", {"default": False}), |
|
"middle_block": ("BOOLEAN", {"default": False}), |
|
"output_block": ("BOOLEAN", {"default": False}), |
|
"multiscale_mode": (list(mscales.keys()),), |
|
"multiscale_strength": ("FLOAT", {"default": 1.0, "max": 1.0, "min": 0, "step": 0.001}), |
|
"slice_b1": ("INT", {"default": 640, "min": 64, "max": 1280, "step": 1}), |
|
"slice_b2": ("INT", {"default": 320, "min": 64, "max": 640, "step": 1}), |
|
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
}, |
|
"optional": { |
|
"threshold": ("INT", {"default": 1.0, "max": 10, "min": 1, "step": 1}), |
|
"use_override_scales": (["false", "true"],), |
|
"override_scales": ("STRING", {"default": '''# OVERRIDE SCALES |
|
|
|
# Sharpen |
|
# 10, 1.5''', "multiline": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def patch(self, model, input_block, middle_block, output_block, multiscale_mode, multiscale_strength, slice_b1, slice_b2, b1, b2, s1, s2, threshold=1.0, use_override_scales="false", override_scales=""): |
|
|
|
min_slice = 64 |
|
max_slice_b1 = 1280 |
|
max_slice_b2 = 640 |
|
slice_b1 = max(min(max_slice_b1, slice_b1), min_slice) |
|
slice_b2 = max(min(min(slice_b1, max_slice_b2), slice_b2), min_slice) |
|
|
|
scales_list = [] |
|
if use_override_scales == "true": |
|
if override_scales.strip() != "": |
|
scales_str = override_scales.strip().splitlines() |
|
for line in scales_str: |
|
if not line.strip().startswith('#') and not line.strip().startswith('!') and not line.strip().startswith('//'): |
|
scale_values = line.split(',') |
|
if len(scale_values) == 2: |
|
scales_list.append((int(scale_values[0]), float(scale_values[1]))) |
|
|
|
if use_override_scales == "true" and not scales_list: |
|
print("No valid override scales found. Using default scale.") |
|
scales_list = None |
|
|
|
scales = mscales[multiscale_mode] if use_override_scales == "false" else scales_list |
|
|
|
def _hidden_mean(h): |
|
hidden_mean = h.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
return hidden_mean |
|
|
|
def block_patch(h, transformer_options): |
|
if h.shape[1] == 1280: |
|
hidden_mean = _hidden_mean(h) |
|
h[:,:slice_b1] = h[:,:slice_b1] * ((b1 - 1 ) * hidden_mean + 1) |
|
if h.shape[1] == 640: |
|
hidden_mean = _hidden_mean(h) |
|
h[:,:slice_b2] = h[:,:slice_b2] * ((b2 - 1 ) * hidden_mean + 1) |
|
return h |
|
|
|
def block_patch_hsp(h, hsp, transformer_options): |
|
if h.shape[1] == 1280: |
|
h = block_patch(h, transformer_options) |
|
hsp = Fourier_filter(hsp, threshold=threshold, scale=s1, scales=scales, strength=multiscale_strength) |
|
if h.shape[1] == 640: |
|
h = block_patch(h, transformer_options) |
|
hsp = Fourier_filter(hsp, threshold=threshold, scale=s2, scales=scales, strength=multiscale_strength) |
|
return h, hsp |
|
|
|
m = model.clone() |
|
if output_block: |
|
print("Patching output block") |
|
m.set_model_output_block_patch(block_patch_hsp) |
|
if input_block: |
|
print("Patching input block") |
|
m.set_model_input_block_patch(block_patch) |
|
if middle_block: |
|
print("Patching middle block") |
|
m.set_model_patch(block_patch, "middle_block_patch") |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"FreeU (Advanced)": WAS_FreeU, |
|
"FreeU_V2 (Advanced)": WAS_FreeU_V2, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"FreeU (Advanced)": "FreeU (Advanced Plus)", |
|
"FreeU_V2 (Advanced)": "FreeU V2 (Advanced Plus)", |
|
} |
|
|