|
import os
|
|
import math
|
|
import matplotlib.pyplot as plt
|
|
|
|
files = [f"models/{x}" for x in os.listdir("models") if x.endswith(".csv")]
|
|
train_loss = {}
|
|
eval_loss = {}
|
|
|
|
def process_lines(lines):
|
|
global train_loss
|
|
global eval_loss
|
|
name = fp.split("/")[1]
|
|
vals = [x.split(",") for x in lines]
|
|
train_loss[name] = (
|
|
[int(x[0]) for x in vals],
|
|
[math.log(float(x[1])) for x in vals],
|
|
)
|
|
if len(vals[0]) >= 3:
|
|
eval_loss[name] = (
|
|
[int(x[0]) for x in vals],
|
|
[math.log(float(x[2])) for x in vals],
|
|
)
|
|
|
|
|
|
def smooth(scalars, weight):
|
|
last = scalars[0]
|
|
smoothed = list()
|
|
for point in scalars:
|
|
smoothed_val = last * weight + (1 - weight) * point
|
|
smoothed.append(smoothed_val)
|
|
last = smoothed_val
|
|
return smoothed
|
|
|
|
def plot(data, fname):
|
|
fig, ax = plt.subplots()
|
|
ax.grid()
|
|
for name, val in data.items():
|
|
ax.plot(val[0], smooth(val[1], 0.9), label=name)
|
|
plt.legend(loc="upper right")
|
|
plt.savefig(fname, dpi=300, bbox_inches='tight')
|
|
|
|
for fp in files:
|
|
with open(fp) as f:
|
|
lines = f.readlines()
|
|
process_lines(lines)
|
|
|
|
plot(train_loss, "loss.png")
|
|
plot(eval_loss, "loss-eval.png")
|
|
|