|
import torch |
|
import tqdm |
|
import k_diffusion.sampling |
|
from modules import sd_samplers_common, sd_samplers_kdiffusion, sd_samplers |
|
from importlib import import_module |
|
|
|
NAME = 'Restart_Test' |
|
ALIAS = 'restart_test' |
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def restart_test_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): |
|
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023) |
|
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} |
|
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list |
|
""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
step_id = 0 |
|
from k_diffusion.sampling import to_d, get_sigmas_karras |
|
|
|
def heun_step(x, old_sigma, new_sigma, second_order=True): |
|
nonlocal step_id |
|
denoised = model(x, old_sigma * s_in, **extra_args) |
|
d = to_d(x, old_sigma, denoised) |
|
if callback is not None: |
|
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) |
|
dt = new_sigma - old_sigma |
|
if new_sigma == 0 or not second_order: |
|
|
|
x = x + d * dt |
|
else: |
|
|
|
x_2 = x + d * dt |
|
denoised_2 = model(x_2, new_sigma * s_in, **extra_args) |
|
d_2 = to_d(x_2, new_sigma, denoised_2) |
|
d_prime = (d + d_2) / 2 |
|
x = x + d_prime * dt |
|
step_id += 1 |
|
return x |
|
|
|
steps = sigmas.shape[0] - 1 |
|
if restart_list is None: |
|
if steps >= 20: |
|
restart_steps = 9 |
|
restart_times = 1 |
|
if steps >= 36: |
|
restart_steps = steps // 4 |
|
restart_times = 2 |
|
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) |
|
restart_list = {0.1: [restart_steps + 1, restart_times, 2]} |
|
else: |
|
restart_list = {} |
|
|
|
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} |
|
|
|
step_list = [] |
|
for i in range(len(sigmas) - 1): |
|
step_list.append((sigmas[i], sigmas[i + 1])) |
|
if i + 1 in restart_list: |
|
restart_steps, restart_times, restart_max = restart_list[i + 1] |
|
min_idx = i + 1 |
|
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) |
|
if max_idx < min_idx: |
|
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] |
|
while restart_times > 0: |
|
restart_times -= 1 |
|
step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:])) |
|
|
|
last_sigma = None |
|
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable): |
|
if last_sigma is None: |
|
last_sigma = old_sigma |
|
elif last_sigma < old_sigma: |
|
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 |
|
x = heun_step(x, old_sigma, new_sigma) |
|
last_sigma = new_sigma |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
if not NAME in [x.name for x in sd_samplers.all_samplers]: |
|
euler_max_samplers = [(NAME, restart_test_sampler, [ALIAS], {})] |
|
samplers_data_euler_max_samplers = [ |
|
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: sd_samplers_kdiffusion.KDiffusionSampler(funcname, model), aliases, options) |
|
for label, funcname, aliases, options in euler_max_samplers |
|
if callable(funcname) or hasattr(k_diffusion.sampling, funcname) |
|
] |
|
sd_samplers.all_samplers += samplers_data_euler_max_samplers |
|
sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers} |
|
sd_samplers.set_samplers() |
|
|