See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6700e7210e3f6191_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6700e7210e3f6191_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik1987/83c2ff06-3778-41df-a6de-a8582abdaca3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/6700e7210e3f6191_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 83c2ff06-3778-41df-a6de-a8582abdaca3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 83c2ff06-3778-41df-a6de-a8582abdaca3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
83c2ff06-3778-41df-a6de-a8582abdaca3
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7738
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.8203 | 0.0003 | 1 | 1.4616 |
5.7421 | 0.0017 | 5 | 1.4401 |
4.9761 | 0.0033 | 10 | 1.2095 |
4.6298 | 0.0050 | 15 | 0.9935 |
3.6041 | 0.0066 | 20 | 0.8895 |
3.4775 | 0.0083 | 25 | 0.8444 |
2.8792 | 0.0099 | 30 | 0.8117 |
3.3873 | 0.0116 | 35 | 0.7912 |
3.1162 | 0.0132 | 40 | 0.7798 |
3.3973 | 0.0149 | 45 | 0.7749 |
2.9933 | 0.0165 | 50 | 0.7738 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 25
Model tree for dimasik1987/83c2ff06-3778-41df-a6de-a8582abdaca3
Base model
NousResearch/CodeLlama-7b-hf-flash