Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d6b44a0c297f4d53_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d6b44a0c297f4d53_train_data.json
  type:
    field_input: disease
    field_instruction: catalyst
    field_output: stage
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik2987/352cbfe1-34a5-448e-9702-bb0ff1c2125b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/d6b44a0c297f4d53_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 2028
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 352cbfe1-34a5-448e-9702-bb0ff1c2125b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 352cbfe1-34a5-448e-9702-bb0ff1c2125b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

352cbfe1-34a5-448e-9702-bb0ff1c2125b

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
3.5544 0.0051 1 3.5220
3.3707 0.0152 3 3.4257
3.0358 0.0304 6 2.2252
1.4471 0.0456 9 1.0823
0.3012 0.0608 12 0.1744
0.2963 0.0760 15 0.1155
0.1333 0.0912 18 0.1238
0.056 0.1064 21 0.1304
0.0073 0.1216 24 0.1298

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
38
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dimasik2987/352cbfe1-34a5-448e-9702-bb0ff1c2125b

Adapter
(79)
this model