Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d8a3e72dac138ae6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d8a3e72dac138ae6_train_data.json
  type:
    field_input: topic
    field_instruction: prompt
    field_output: completion
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dimasik2987/5933fc7c-eb40-4e07-ad9d-a841166e2089
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8a3e72dac138ae6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2028
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5933fc7c-eb40-4e07-ad9d-a841166e2089
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5933fc7c-eb40-4e07-ad9d-a841166e2089
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

5933fc7c-eb40-4e07-ad9d-a841166e2089

This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0046 1 nan
0.0 0.0183 4 nan
0.0 0.0366 8 nan
0.0 0.0549 12 nan
0.0 0.0731 16 nan
0.0 0.0914 20 nan
0.0 0.1097 24 nan
0.0 0.128 28 nan
0.0 0.1463 32 nan
0.0 0.1646 36 nan
0.0 0.1829 40 nan
0.0 0.2011 44 nan
0.0 0.2194 48 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dimasik2987/5933fc7c-eb40-4e07-ad9d-a841166e2089

Base model

Qwen/Qwen2.5-1.5B
Adapter
(48)
this model