See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Hermes-3-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5daf839d73ce7025_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5daf839d73ce7025_train_data.json
type:
field_instruction: text
field_output: label_codes
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dimasik87/8102bae9-c442-4a29-848f-946f8771f1f9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 1
mlflow_experiment_name: /tmp/5daf839d73ce7025_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2028
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8102bae9-c442-4a29-848f-946f8771f1f9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8102bae9-c442-4a29-848f-946f8771f1f9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8102bae9-c442-4a29-848f-946f8771f1f9
This model is a fine-tuned version of unsloth/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.2351 | 0.0004 | 1 | 7.1638 |
7.51 | 0.0017 | 4 | 6.9215 |
4.7822 | 0.0034 | 8 | 4.4631 |
1.5597 | 0.0051 | 12 | 1.5648 |
0.481 | 0.0068 | 16 | 0.6843 |
0.3143 | 0.0084 | 20 | 0.5307 |
0.1861 | 0.0101 | 24 | 0.4394 |
0.1889 | 0.0118 | 28 | 0.4399 |
0.2487 | 0.0135 | 32 | 0.3397 |
0.4158 | 0.0152 | 36 | 0.3151 |
0.3524 | 0.0169 | 40 | 0.2879 |
0.2272 | 0.0186 | 44 | 0.2739 |
0.3537 | 0.0203 | 48 | 0.2677 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 48
Model tree for dimasik87/8102bae9-c442-4a29-848f-946f8771f1f9
Base model
unsloth/Hermes-3-Llama-3.1-8B