dini-r-a's picture
End of training
81054fc
metadata
base_model: nateraw/vit-age-classifier
tags:
  - generated_from_trainer
datasets:
  - fair_face
metrics:
  - accuracy
model-index:
  - name: image_age_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: fair_face
          type: fair_face
          config: '0.25'
          split: train[:10000]
          args: '0.25'
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.601

image_age_classification

This model is a fine-tuned version of nateraw/vit-age-classifier on the fair_face dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9464
  • Accuracy: 0.601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9107 1.0 125 0.9360 0.6065
0.7945 2.0 250 0.9545 0.588
1.0256 3.0 375 1.0144 0.586
0.7354 4.0 500 0.9726 0.594
0.6979 5.0 625 0.9735 0.5995

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.14.5
  • Tokenizers 0.12.1