contribute-branch
#12
by
HiveerLi
- opened
README.md
CHANGED
@@ -23,24 +23,14 @@ It is a distilled version of the Whisper model that is **6 times faster**, 49% s
|
|
23 |
**within 1% WER** on out-of-distribution evaluation sets. This is the repository for distil-large-v2,
|
24 |
a distilled variant of [Whisper large-v2](https://huggingface.co/openai/whisper-large-v2).
|
25 |
|
26 |
-
| Model | Params / M | Rel. Latency
|
27 |
-
|
28 |
-
| [large-
|
29 |
-
|
|
30 |
-
|
|
31 |
-
| [distil-
|
32 |
-
|
33 |
-
|
34 |
-
| [distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) | **166** | 5.6 | 12.1 | 12.8 |
|
35 |
-
|
36 |
-
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
|
37 |
-
<p><b>Update:</b> following the release of OpenAI's Whisper large-v3, an updated <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model was published. This <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model surpasses the performance of the distil-large-v2 model, with no architecture changes and better support for sequential long-form generation. Thus, it is recommended that the <a href="ttps://huggingface.co/distil-whisper/distil-large-v3"> distil-large-v3</a> model is used in-place of the large-v2 model. </p>
|
38 |
-
</div>
|
39 |
-
|
40 |
-
**Note:** Distil-Whisper is currently only available for English speech recognition. We are working with the community
|
41 |
-
to distill Whisper on other languages. If you are interested in distilling Whisper in your language, check out the
|
42 |
-
provided [training code](https://github.com/huggingface/distil-whisper/tree/main/training). We will update the
|
43 |
-
[Distil-Whisper repository](https://github.com/huggingface/distil-whisper/) with multilingual checkpoints when ready!
|
44 |
|
45 |
## Usage
|
46 |
|
@@ -56,7 +46,7 @@ pip install --upgrade transformers accelerate datasets[audio]
|
|
56 |
### Short-Form Transcription
|
57 |
|
58 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
59 |
-
class to transcribe short-form audio files
|
60 |
|
61 |
```python
|
62 |
import torch
|
@@ -101,7 +91,7 @@ To transcribe a local audio file, simply pass the path to your audio file when y
|
|
101 |
|
102 |
### Long-Form Transcription
|
103 |
|
104 |
-
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files
|
105 |
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
|
106 |
|
107 |
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
|
@@ -154,9 +144,9 @@ result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/r
|
|
154 |
|
155 |
### Speculative Decoding
|
156 |
|
157 |
-
Distil-Whisper can be used as an assistant model to Whisper for
|
158 |
-
|
159 |
-
|
160 |
|
161 |
In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
|
162 |
specify it as the "assistant model" for generation:
|
@@ -239,72 +229,21 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dt
|
|
239 |
+ model = model.to_bettertransformer()
|
240 |
```
|
241 |
|
242 |
-
###
|
243 |
-
|
244 |
-
To use the model in the original Whisper format, first ensure you have the [`openai-whisper`](https://pypi.org/project/openai-whisper/) package installed:
|
245 |
-
|
246 |
-
```bash
|
247 |
-
pip install --upgrade openai-whisper
|
248 |
-
```
|
249 |
-
|
250 |
-
The following code-snippet demonstrates how to transcribe a sample file from the LibriSpeech dataset loaded using
|
251 |
-
🤗 Datasets:
|
252 |
-
|
253 |
-
```python
|
254 |
-
import torch
|
255 |
-
from datasets import load_dataset
|
256 |
-
from huggingface_hub import hf_hub_download
|
257 |
-
from whisper import load_model, transcribe
|
258 |
-
|
259 |
-
distil_large_v2 = hf_hub_download(repo_id="distil-whisper/distil-large-v2", filename="original-model.bin")
|
260 |
-
model = load_model(distil_large_v2)
|
261 |
-
|
262 |
-
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
263 |
-
sample = dataset[0]["audio"]["array"]
|
264 |
-
sample = torch.from_numpy(sample).float()
|
265 |
|
266 |
-
|
267 |
-
print(pred_out["text"])
|
268 |
-
```
|
269 |
|
270 |
-
|
271 |
|
272 |
-
|
273 |
-
pred_out = transcribe(model, audio="audio.mp3")
|
274 |
-
```
|
275 |
|
276 |
### Whisper.cpp
|
277 |
|
278 |
-
|
279 |
-
sequential long-form transcription algorithm. In a [provisional benchmark](https://github.com/ggerganov/whisper.cpp/pull/1424#issuecomment-1793513399)
|
280 |
-
on Mac M1, `distil-large-v2` is 2x faster than `large-v2`, while performing to within 0.1% WER over long-form audio.
|
281 |
-
|
282 |
-
Note that future releases of Distil-Whisper will target faster CPU inference more! By distilling smaller encoders, we
|
283 |
-
aim to achieve similar speed-ups to what we obtain on GPU.
|
284 |
-
|
285 |
-
Steps for getting started:
|
286 |
-
1. Clone the Whisper.cpp repository:
|
287 |
-
```
|
288 |
-
git clone https://github.com/ggerganov/whisper.cpp.git
|
289 |
-
cd whisper.cpp
|
290 |
-
```
|
291 |
-
2. Download the ggml weights for `distil-medium.en` from the Hugging Face Hub:
|
292 |
-
|
293 |
-
```bash
|
294 |
-
python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='distil-whisper/distil-large-v2', filename='ggml-large-32-2.en.bin', local_dir='./models')"
|
295 |
-
```
|
296 |
-
|
297 |
-
Note that if you do not have the `huggingface_hub` package installed, you can also download the weights with `wget`:
|
298 |
-
|
299 |
-
```bash
|
300 |
-
wget https://huggingface.co/distil-whisper/distil-large-v2/resolve/main/ggml-large-32-2.en.bin -P ./models
|
301 |
-
```
|
302 |
|
303 |
-
|
304 |
|
305 |
-
|
306 |
-
make -j && ./main -m models/ggml-large-32-2.en.bin -f samples/jfk.wav
|
307 |
-
```
|
308 |
|
309 |
|
310 |
### Transformers.js
|
@@ -323,43 +262,6 @@ See the [docs](https://huggingface.co/docs/transformers.js/api/pipelines#module_
|
|
323 |
|
324 |
*Note:* Due to the large model size, we recommend running this model server-side with [Node.js](https://huggingface.co/docs/transformers.js/guides/node-audio-processing) (instead of in-browser).
|
325 |
|
326 |
-
### Candle
|
327 |
-
|
328 |
-
Through an integration with Hugging Face [Candle](https://github.com/huggingface/candle/tree/main) 🕯️, Distil-Whisper is
|
329 |
-
now available in the Rust library 🦀
|
330 |
-
|
331 |
-
Benefit from:
|
332 |
-
* Optimised CPU backend with optional MKL support for x86 and Accelerate for Macs
|
333 |
-
* CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL
|
334 |
-
* WASM support: run Distil-Whisper in a browser
|
335 |
-
|
336 |
-
Steps for getting started:
|
337 |
-
1. Install [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as explained [here](https://huggingface.github.io/candle/guide/installation.html)
|
338 |
-
2. Clone the `candle` repository locally:
|
339 |
-
```
|
340 |
-
git clone https://github.com/huggingface/candle.git
|
341 |
-
```
|
342 |
-
3. Enter the example directory for [Whisper](https://github.com/huggingface/candle/tree/main/candle-examples/examples/whisper):
|
343 |
-
```
|
344 |
-
cd candle/candle-examples/examples/whisper
|
345 |
-
```
|
346 |
-
4. Run an example:
|
347 |
-
```
|
348 |
-
cargo run --example whisper --release -- --model distil-large-v2
|
349 |
-
```
|
350 |
-
5. To specify your own audio file, add the `--input` flag:
|
351 |
-
```
|
352 |
-
cargo run --example whisper --release -- --model distil-large-v2 --input audio.wav
|
353 |
-
```
|
354 |
-
|
355 |
-
### 8bit & 4bit Quantization
|
356 |
-
|
357 |
-
Coming soon ...
|
358 |
-
|
359 |
-
### Whisper.cpp
|
360 |
-
|
361 |
-
Coming soon ...
|
362 |
-
|
363 |
## Model Details
|
364 |
|
365 |
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
|
@@ -516,12 +418,7 @@ where it performs to within 0.2% WER of Whisper.
|
|
516 |
|
517 |
## Reproducing Distil-Whisper
|
518 |
|
519 |
-
Training and evaluation code to reproduce Distil-Whisper
|
520 |
-
|
521 |
-
|
522 |
-
## License
|
523 |
-
|
524 |
-
Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
|
525 |
|
526 |
## Citation
|
527 |
|
|
|
23 |
**within 1% WER** on out-of-distribution evaluation sets. This is the repository for distil-large-v2,
|
24 |
a distilled variant of [Whisper large-v2](https://huggingface.co/openai/whisper-large-v2).
|
25 |
|
26 |
+
| Model | Params / M | Rel. Latency | Short-Form WER | Long-Form WER |
|
27 |
+
|----------------------------------------------------------------------------|------------|--------------|----------------|---------------|
|
28 |
+
| [large-v2](https://huggingface.co/openai/whisper-large-v2) | 1550 | 1.0 | **9.1** | 11.7 |
|
29 |
+
| | | | | |
|
30 |
+
| [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) | 756 | 5.8 | 10.1 | **11.6** |
|
31 |
+
| [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) | **394** | **6.8** | 11.1 | 12.4 |
|
32 |
+
|
33 |
+
**Note:** Distil-Whisper is currently only available for English speech recognition. Multilingual support will be provided in a follow-up.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Usage
|
36 |
|
|
|
46 |
### Short-Form Transcription
|
47 |
|
48 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
49 |
+
class to transcribe short-form audio files as follows:
|
50 |
|
51 |
```python
|
52 |
import torch
|
|
|
91 |
|
92 |
### Long-Form Transcription
|
93 |
|
94 |
+
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files. In practice, this chunked long-form algorithm
|
95 |
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
|
96 |
|
97 |
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
|
|
|
144 |
|
145 |
### Speculative Decoding
|
146 |
|
147 |
+
Distil-Whisper can be used as an assistant model to Whisper for speculative decoding. Speculative decoding mathematically
|
148 |
+
ensures the exact same outputs as Whisper are obtained while being 2 times faster. This makes it the perfect drop-in
|
149 |
+
replacement for existing Whisper pipelines, since the same outputs are guaranteed.
|
150 |
|
151 |
In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
|
152 |
specify it as the "assistant model" for generation:
|
|
|
229 |
+ model = model.to_bettertransformer()
|
230 |
```
|
231 |
|
232 |
+
### 8bit & 4bit Quantization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
Coming soon ...
|
|
|
|
|
235 |
|
236 |
+
### Candle
|
237 |
|
238 |
+
Coming soon ...
|
|
|
|
|
239 |
|
240 |
### Whisper.cpp
|
241 |
|
242 |
+
Coming soon ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
+
### Running Whisper in `openai/whisper`
|
245 |
|
246 |
+
Coming soon ...
|
|
|
|
|
247 |
|
248 |
|
249 |
### Transformers.js
|
|
|
262 |
|
263 |
*Note:* Due to the large model size, we recommend running this model server-side with [Node.js](https://huggingface.co/docs/transformers.js/guides/node-audio-processing) (instead of in-browser).
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
## Model Details
|
266 |
|
267 |
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
|
|
|
418 |
|
419 |
## Reproducing Distil-Whisper
|
420 |
|
421 |
+
Training and evaluation code to reproduce Distil-Whisper will be made available on the Distil-Whisper repository: https://github.com/huggingface/distil-whisper
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
## Citation
|
424 |
|
generation_config.json
CHANGED
@@ -123,11 +123,10 @@
|
|
123 |
"<|zh|>": 50260
|
124 |
},
|
125 |
"language": "<|en|>",
|
126 |
-
"max_initial_timestamp_index":
|
127 |
"max_length": 448,
|
128 |
"no_timestamps_token_id": 50363,
|
129 |
"pad_token_id": 50257,
|
130 |
-
"prev_sot_token_id": 50361,
|
131 |
"return_timestamps": false,
|
132 |
"suppress_tokens": [
|
133 |
1,
|
|
|
123 |
"<|zh|>": 50260
|
124 |
},
|
125 |
"language": "<|en|>",
|
126 |
+
"max_initial_timestamp_index": 1,
|
127 |
"max_length": 448,
|
128 |
"no_timestamps_token_id": 50363,
|
129 |
"pad_token_id": 50257,
|
|
|
130 |
"return_timestamps": false,
|
131 |
"suppress_tokens": [
|
132 |
1,
|
original-model.bin → original-large-32-2-en.bin
RENAMED
File without changes
|
original-model.fp32.bin → original-large-32-2.fp32.bin
RENAMED
File without changes
|