glaswegian-asr / README.md
divakaivan's picture
Update README.md
0804027 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - divakaivan/glaswegian_audio
metrics:
  - wer
model-index:
  - name: Glaswegian_Whisper
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Glaswegian audio
          type: divakaivan/glaswegian_audio
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 40.5394016013485

Fine-tuned using this notebook

Glaswegian_Whisper

This model is a fine-tuned version of openai/whisper-small on the Glaswegian audio dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4788
  • Wer: 40.5394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0084 16.3934 1000 1.2802 38.5588
0.0019 32.7869 2000 1.4141 39.0223
0.0002 49.1803 3000 1.4553 40.3287
0.0001 65.5738 4000 1.4788 40.5394

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1