Edit model card

Fine-tuned using this notebook

Sample Usage


# Load the model
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
### Load peft config for pre-trained checkpoint etc.
peft_model_id = "results"
config = PeftConfig.from_pretrained(peft_model_id)
 
### Load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("divakaivan/t5-large-finetuned-reviewer-kr",  load_in_8bit=True,  device_map={"":0})
tokenizer = AutoTokenizer.from_pretrained("divakaivan/t5-large-finetuned-reviewer-kr")
 
### Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0})
model.eval()

# Sample Input

### Review
review = """๋ฆฌ๋ทฐ 1: ๋ถˆํ›„์˜ ์„ฑ๋Ÿ‰์œผ๋กœ ์ œ๋ชฉ ๋ฐ”๊ฟ”๋ผ. ์ด๊ฑด ๋ญ ์†Œ๋ฆฌ๋งŒ ๊ฝฅ๊ฝฅ ์ง€๋ฅด๊ณ  ์ง€๋“ค๋ผ๋ฆฌ ๊ฐ๋™์ด๋ž˜. ์ „ํ˜€ ๊ณต๊ฐ ๋ชป ํ•˜๊ฒ ๊ตฌ๋งŒ ์ฏง;  ๋ฆฌ๋ทฐ 2: ๋‚œ ์›๋ž˜ ๊ธฐ๋ฆฐ(์ด๊ด‘์ˆ˜) ์‹ซ์–ดํ•œ๋‹ค ํฌํฌํฌ.... ๋Šฅ๋ ฅ์ž๊ฐ€ ์ข‹๋‹ค;  ๋ฆฌ๋ทฐ 3: ๊ทธ๋ž˜๋„ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋˜ ๋“œ๋ผ๋งŒ๋ฐ์š”...์ด์„ ๋‚จ์ด๋ž‘ ๋ฏผ์ง€์ˆ˜๊ฐ€ ์ž˜๋˜๊ธธ ๋ฐ”๋ž˜๋Š” ๋งˆ์Œ์—์„œ์š”..๊ทผ๋ฐ ์˜ค๋Š˜ ์•„์นจ๋“œ๋ผ๋งŒ ์ •๋ง ์‹ค๋งํ–ˆ์–ด์š”. ๋ˆˆ๋ฌผ์ด ํ•‘๋Œ๋”๋ผ๊ตฌ์š”..์–ด์ฉœ ํ•œํ‰์ƒ ๋‹นํ•˜๊ณ  ์ฐฉํ•˜๊ฒŒ๋งŒ ์‚ฌ๋žŒ์€ ์ฃฝ์–ด์•ผํ•˜๋‚˜์š”.. ์ด๋“œ๋ผ๋งˆ์ž‘๊ฐ€ ์ตœ์•…์˜ ์ตœ์•…์ด์˜ˆ์š”.. ๋“œ๋ผ๋งˆ๋‹ค์‹ ๋ณด๊ณ ์‹ถ์ง€์•Š์•„์š”;  ๋ฆฌ๋ทฐ 4: ๋๊นŒ์ง€ ์•‰์•„์žˆ๊ธฐ๊ฐ€ ๋„˜ ํž˜๋“ค์—ˆ์Œ.. ์žฌ๋ฏธ๋„.. ๋‚ด์šฉ๋„.. ๊ฐ๋™๋„.. ์ตœ์•…์ž„..;  ๋ฆฌ๋ทฐ 5: ๊ทธ๋ƒฅ ์ธ๊ฐ„๊ทน์žฅ์ด ๋” ๋‚ ๋“ฏ..ํ‹ฐ๋น„๋กœ๋ณด๊ตฌ๋งŒ๋‹ค;  ๋ฆฌ๋ทฐ 6: ์‚ฌ๊ณ ๋ญ‰์น˜์ด์ง€๋งŒ ์–ด๋จธ๋‹ˆ์— ๋Œ€ํ•œ ๋œจ๊ฑด์šด ์‚ฌ๋ž‘์ด ๋ˆŒ๋ฌผ๊ฒจ์›Œ ๊ฐ๋™์ ์ด์—ˆ๋‹ค.;  ๋ฆฌ๋ทฐ 7: ์„ค์žฅ์šฐ ์นœ๊ตฌ์—ญ์œผ๋กœ ๋‚˜์˜จ ๋ฐฐ์šฐ๋ถ„ ๋ˆ„๊ตฌ์ง€? ์ œ์ผ ์›ƒ๊ฒผ์Œ;  ๋ฆฌ๋ทฐ 8: ์€ํ˜„์ˆ˜ ๋„ˆ๋ฌด ๋‹ต๋‹ตํ•œ์บ๋ฆญํ„ฐ ๋ณด๊ณ ์žˆ์Œ ์งœ์ฆ๋‹์•„์š”ใ…กใ…ก์•„ ์—ฐ๊ธฐ๋„ ๊ทธ๋‹ฅ;  ๋ฆฌ๋ทฐ 9: ์ด์˜ํ™”๋ณด๊ณ ์‹ถ์€๋ฐ ใ… ใ…  ์–ด๋””์„œ ๋ด์š”? ใ… ใ…  ์ฐพ์„์ˆ˜๊ฐ€์—†์–ด์š”ใ… ใ… ;  ๋ฆฌ๋ทฐ 10: ์ด ์˜ํ™”ํ•œ๋ฒˆ ๋”๋ณผ๋ ค๊ณ ,์ŠคํŒŒ์ด๋”๋งจ,์ฒซ์‚ฌ๋ž‘,์กฐํญ2..๋ณด์ง€๋„ ์•Š์•˜๋‹ค!;  ๋ฆฌ๋ทฐ 11: ์ฝ”์ฝ”๋ชฝ๋‚˜์™”์„๋•Œ๋„ ์šธ์—ˆ์Šต๋‹ˆ๋‹ค..;  ๋ฆฌ๋ทฐ 12: ์•„์ง์•ˆ๋ดค์ง€๋งŒ ๋งˆํ‹ด๋•Œ๋ฌธ์—๋ณธ๋‹คใ…‹ใ…‹ใ…‹ใ…‹;  ๋ฆฌ๋ทฐ 13: ์˜ํ™”์ƒ์˜ ๋‚ด๋‚ด ๊ณณ๊ณณ์—์„œ ํ„ฐ์ ธ๋‚˜์˜ค๋Š” ์‹ค์†Œ. ์ฝ”๋ฏธ๋””๋กœ ์ƒ๊ฐํ•˜๊ณ  ๋ณด๋ฉด ์˜์™ธ๋กœ ๊ดœ์ฐฎ์„์ง€๋„;  ๋ฆฌ๋ทฐ 14: ์ผ์ ๋„ ์•„๊น๋‹ค ์ง„์งœOOO์˜ํ™” ใ…‹ใ…‹ใ…‹ใ…‹ ์•Œ๋ฐ”์•ผ์†”์งํžˆ ์ด๊ฑด์–‘์‹ฌ์—์ฐ”๋ฆฌ์ง€์•Š๋‹ˆ?;  ๋ฆฌ๋ทฐ 15: ์„น์‹œํ•œ๊ฑด ๋‘˜์งธ์น˜๊ณ  ์นด์Šค๋ฏธ๊ฐ€ ์ „ํ˜€ ๋”ดํŒ์ด์ž–์•„ใ…กใ…ก;  ๋ฆฌ๋ทฐ 16: ๋‚˜๋ฅผ ์œ„ํ•œ ์ด์•ผ๊ธฐ .;  ๋ฆฌ๋ทฐ 17: ๋ผ๋ฏผ, ์‹œ์—๋ผ, ํ•˜๋“ค๋ฆฌ ๋‚˜์˜ค๋Š” ์ค„ ์•Œ๊ณ  DVD ๊ตฌ๋งคํ–ˆ๋‹ค๊ฐ€ ๋ˆˆ๋ฌผํ˜๋ฆผ. LND ๋…ธ๋ž˜๋Š” ์ข‹์€๋ฐ ์–˜๋„ค๊ฐ€ ๋ชป๋ถ€๋ฅด๊ณ  ์—ฐ๊ธฐ๋„ ๋ชปํ•จ;;;  ๋ฆฌ๋ทฐ 18: ์ตœ๊ณ ์˜ ์˜ํ™”. ์ด ์˜ํ™”๋ฅผ ๋ณด๊ณ ์„œ ํ˜๋ฆฌ๋Š” ๋ˆˆ๋ฌผ์€ .... ์“ฐ๋ฉด์„œ ๋‹ฌ๋‹ค.;  ๋ฆฌ๋ทฐ 19: ํ†ต์ œ๊ฐ€ ์•ˆ ๋˜๋‹ˆ ์‚ฐ์œผ๋กœ ๊ฐ€๋‹ค.;  ๋ฆฌ๋ทฐ 20: ์žฌ๋ฐŒ๊ฒŒ ๋ดค๋˜ ์ถ”์–ต์˜ ๋“œ๋ผ๋งˆ;  ๋ฆฌ๋ทฐ 21: ๋ป”ํ•œ๋ฐ˜์ „ ,;  ๋ฆฌ๋ทฐ 22: ๋ง์ด ํ•„์š”์—†๋Š” ์—ญ๋Œ€ ์ตœ๊ณ ์˜ ๋ช…์ž‘์ž…๋‹ˆ๋‹ค.;  ๋ฆฌ๋ทฐ 23: ๋ณ„ ํ•œ๊ฐœ๋„ ์•„๊นŒ์šด ์“ฐ๋ ˆ๊ธฐ์˜ํ™”... ์งœ์ฆ๋‚˜;  ๋ฆฌ๋ทฐ 24: ใ… ใ……ใ… )bbbb;  ๋ฆฌ๋ทฐ 25: ์ž์‹ ์„ ๋ฐ”๋กœ๋ณด๊ณ  ์‚ถ์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๋‚˜์—๊ฒŒ๋„ ์ฃผ๋ณ€์ธ์—๊ฒŒ๋„ ํ–‰๋ณต์ด ์•„๋‹๊นŒ..์‹ถ์—ˆ๋‹ค.๋‚ด๊ฐ€ ๋‚ด์‚ถ์— ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ถˆํ–‰ํ•˜๋ฉด ๋‚ด์ฃผ์œ„๋„ ๊ฒฐ์ฝ” ํ–‰๋ณตํ•  ์ˆ˜ ์—†๋‹ค.์ด๊ธฐ์ ์ผ๊นŒ..์•„๋‹ˆ ์ˆ™๋ช…์ด๋‹ค.;  ๋ฆฌ๋ทฐ 26: ์ œ๋ชฉ๋ถ€ํ„ฐ ๋ฐ”๊ฟ”๋ผ ํƒ€๊ณ„ํ•˜์‹  ๋ ˆ์ด ๋ธŒ๋ž˜๋“œ๋ฒ„๋ฆฌ๊ฐ€ ๊ทธ๋ ‡๊ฒŒ ์—ญ์ •์„ ๋ƒˆ๋Š”๋ฐ๋„ ๋ป”๋ป”ํ•˜๋„ค;  ๋ฆฌ๋ทฐ 27: ์Šค๋ฆด๋Ÿฌ ํŒฌ์ด์ง€๋งŒ ์ด๊ฑด ๋ญ ์•„๋‹ˆ๋„ค์š”...;  ๋ฆฌ๋ทฐ 28: ์„ฑ์žฅ์˜ํ™”๋ผ๋Š” ํ‹€์— ๊ฐ€๋‘๋ฉด ์ดŒ์Šค๋Ÿฌ์›Œ์ง„๋‹ค. ์ง์„ค์–ด๋ฒ•์„ ํ”ผํ•œ ํ˜„์‹ค๊ณผ ๊ฟˆ, ์•„ํŒŒ์„œ ์ข‹์•˜๋‹ค.;  ๋ฆฌ๋ทฐ 29: ๊ฟ€์žผ ํ—ˆ๋‹ˆ์žผ ใ… ใ…  ๋ณด๋Š”๋‚ด๋‚ด ์›ƒ์Œ์ง€์œผ๋ฉด์„œ๋ณธ ์˜ํ˜ธใ…“ ใ…œใ…œ ๊ฒ์ž ์—ฐ๊ธฐ์ž˜ํ•˜๋„ค;  ๋ฆฌ๋ทฐ 30: ์ด๊ฑฐ ๋ณด๊ณ  ์กฐ์Šน์šฐ๊ฐ€ ๋” ์ข‹์•„์ง..;  ๋ฆฌ๋ทฐ 31: ๊ฒŒ์ž„ ์‹ฌ์ฆˆํ•˜๋Š” ๊ฒƒ ๊ฐ™์ด ์•„๊ธฐ์ž๊ธฐํ•จ. ํฐ ์žฌ๋ฏธ๋Š” ์•„๋‹ˆ์ง€๋งŒ ์ฒ˜์Œ๋ถ€ํ„ฐ ๋๊นŒ์ง€ ์†Œ์†Œํ•˜๊ฒŒ ์œ ์พŒํ•จ.;  ๋ฆฌ๋ทฐ 32: ๋จน๋ฐฉ๋„ ์•„๋‹ˆ๊ณ  ์ณ๋ฌต์ณ๋ฌต ํ•˜๋Š” ์žฅ๋ฉด๋งŒ ๋„ˆ๋ฌด ํด๋กœ์ฆˆ์—… ํ•ด์„œ ์˜ค๋ž˜๋ณด์—ฌ์ฃผ๋‹ˆโ€ฆโ€ฆ. ๋ญ” ๋“œ๋ผ๋งˆ๊ฐ€ ์ด๋Ÿฐ์ง€?;  ๋ฆฌ๋ทฐ 33: 2015๋…„์— ๋ณด๋‹ˆ ๋„ˆ๋ฌด ํ…Œ๋Ÿฌ๋ธ”ํ•˜๋‹ค..;  ๋ฆฌ๋ทฐ 34: ์žฌ๋ฏธ์žˆ๋‹ค. ์—ฌ์„ฑ๊ฐ๋…์œผ๋กœ์„œ ์Šค์ผ€์ผ ํฐ ์ž‘ํ’ˆ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ!;  ๋ฆฌ๋ทฐ 35: ์†Œ์‹ฌํ•œ ๋ณต์ˆ˜, ๊ทธ๋Ÿฌ๋‚˜ ๋„ˆ๋ฌด ํ†ต์พŒ;  ๋ฆฌ๋ทฐ 36: ํ•œ๊ตญ์—๋„ ์ด๋Ÿฐ ์˜ํ™”๊ฐ€ ์žˆ๊ตฌ๋‚˜ .. ๋ณด๊ณ ๋„ ๋ฏฟ์„ ์ˆ˜๊ฐ€ ์—†๋‹คํ•œ ์žฅ๋ฉด ํ•œ ์žฅ๋ฉด ๋‹ค ์ฃผ์˜ฅ๊ฐ™์€ ๋Œ€์‚ฌ๋“ค๊ณผ ๋”๋ถˆ์–ด ๋‚ด ์‚ถ์„ ๋˜๋Œ์•„ ๋ณด๊ฒŒ ๋งŒ๋“œ๋Š” ์˜ํ™”์ธ๊ฒƒ ๊ฐ™๋‹ค;  ๋ฆฌ๋ทฐ 37: ํ•œํฌ์ •์ด๋‹ค...........;  ๋ฆฌ๋ทฐ 38: ์ƒ๊ฐ๋ณด๋‹ค๋„ˆ๋ฌด๊ดœ์ฐฎ์•˜๋˜์˜ํ™”, ์—ฐ๊ธฐํŒŒ ๋ฐฐ์šฐ๋“ค์˜ ์—ฐ๊ธฐ๊ฐ€ ํŠนํžˆ ๋‹๋ณด์ธ๋‹ค;  ๋ฆฌ๋ทฐ 39: ๊ฑฐ์ง“๋ง์Ÿ์ด๋“ค์ด ๋งŒ๋“  ์˜ํ™”;  ๋ฆฌ๋ทฐ 40: ๋นจ๋ฆฌ ์  ์ฐ์–ด....๋นจ๋ฆฌ;  ๋ฆฌ๋ทฐ 41: ํ•œ ๋ฒˆ ์ƒ๊ฐ ํ•ด๋ด. ์†Œ์ˆ˜์˜ ์œ ํƒœ์ธ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋…์ผ ๊ฒฝ์ œ๋ฅผ ๊ฐ‰์•„ ๋จน์—ˆ๋Š” ์ง€๋ฅผโ€ฆ.;  ๋ฆฌ๋ทฐ 42: ๊ฝƒ๋ณด๋‹ค ์†Œ๋…„๋“ค โ™ฅโ™ฅโ™ฅโ™ฅ;  ๋ฆฌ๋ทฐ 43: ๊ธฐ๋ถ„์ด ์ข‹์•„์ง€๋„ค์š”^^;  ๋ฆฌ๋ทฐ 44: ์ผ๋ฐฉ์ , ํŽธํ˜‘ํ•œ ์‚ฌ๊ณ ๋“ค์ด ๋งŒ๋“ค์–ด๋‚ธ ์ผ๋ฐ˜ํ™”์™€ ๊ฐ์ธํšจ๊ณผ๋กœ ์ธํ•ด ํ•œ ์ธ๊ฐ„์˜ ์‚ถ์ด ์–ด๋–ป๊ฒŒ ๋ฐ”๋€”์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์ˆ˜ ์žˆ๋Š” ์˜ํ™”๋‹ค. ์˜คํžˆ๋ ค ์–ด๋ฆฐ์•„์ด๋‹ˆ๊น ๋˜๋Š” ์‚ฌํšŒ์  ์•ฝ์ž์ด๊ธฐ์— ๋‹น์—ฐํ•˜๊ณ  ๋งž์„๊ฒƒ์ด๋ผ๋Š” ์ƒ๊ฐ์˜ ์˜ค์ ์ด ์–ผ๋งˆ๋‚˜ ํฐ ์‹ค์ˆ˜๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์•„์•ผ ํ•  ๊ฒƒ์ด๋‹ค.;  ๋ฆฌ๋ทฐ 45: "์•„๋ จํ•˜๋„ค์š”, ""๊ฑฐ์ ˆ ํ• ํ…Œ๋‹ค."" ""์ด์ œ ํ—ค์–ด์ง€์ž"" ""๋„ค"";  ๋ฆฌ๋ทฐ 46: ๊ฒฌ์ž๋‹จ ์•ก์…˜๋งŒ์œผ๋กœ ์ตœ๊ณ ์˜€์Œ...;  ๋ฆฌ๋ทฐ 47: ์™„์ „ ๋Œ€๋ฐ• ์งฑ ์žผ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์•„.... ๋ฐ˜์ „.... ์ง„์งœ ์žฅ๋‚œ์•„๋‹ˆ๋‹ค.;  ๋ฆฌ๋ทฐ 48: ์ด๊ฑฐ 1์ ์ค€๊ฒƒ๋“ค์€ ๋”๋Ÿฌ์šด OO์ž์‹์ธ๋“ฏ...;  ๋ฆฌ๋ทฐ 49: ์žฅ๊ตญ์˜์ด ์—†๋Š” ์˜์ฑ„์‹  ๋ณ„๋กœ ์˜€๋‹ค. ใ…กใ…ก;  ๋ฆฌ๋ทฐ 50: ใ…† ใ…‚ .... OOO๊ฐ™์€ OOO ์˜ํ™”;"""

### Prompt
prompt = "Your task is to summarise. You are a helpful assistant that helps me evaluate Korean reviews. For each movie you are given 50 reviews. Analyze the reviews, and for the movie itself return a score(1 to 10) and explanation for each of the following criteria: Emotional, Characters, Plot, Visuals, Pacing. Return the review in Korean."

### Model Input
model_input = prompt + review

# Run Inference

input_ids = tokenizer(model_input, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=1000, do_sample=True, top_p=0.9)
output = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
 
print(output)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for divakaivan/t5-large-finetuned-reviewer-kr

Finetuned
(1)
this model

Dataset used to train divakaivan/t5-large-finetuned-reviewer-kr