aha_classification

This model is a fine-tuned version of monologg/kobigbird-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1156
  • F1: 0.9617
  • Roc Auc: 0.9682
  • Accuracy: 0.9478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 42 0.3257 0.8718 0.8998 0.8522
No log 2.0 84 0.1861 0.9451 0.9573 0.9217
No log 3.0 126 0.1474 0.9492 0.9595 0.9304
No log 4.0 168 0.1156 0.9617 0.9682 0.9478
No log 5.0 210 0.1185 0.9536 0.9637 0.9391
No log 6.0 252 0.1133 0.9492 0.9595 0.9304
No log 7.0 294 0.1098 0.9580 0.9679 0.9391
No log 8.0 336 0.1084 0.9536 0.9637 0.9391
No log 9.0 378 0.1167 0.9536 0.9637 0.9391

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
114M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for djsull/aha_classification

Finetuned
(5)
this model