Adapt a Transformers/Diffusers script to Intel Gaudi
🤗 Optimum for Intel Gaudi features HPU-optimized support for many of the latest 🤗 Transformers and Diffusers models. To convert a script to use model optimized for a Gaudi device, simple adaptation can be performed.
Transformers
Here is how to do a transformers script adaptation for Intel Gaudi:
- from transformers import Trainer, TrainingArguments
+ from optimum.habana import GaudiTrainer, GaudiTrainingArguments
# Define the training arguments
- training_args = TrainingArguments(
+ training_args = GaudiTrainingArguments(
+ use_habana=True,
+ use_lazy_mode=True,
+ gaudi_config_name=gaudi_config_name,
...
)
# Initialize our Trainer
- trainer = Trainer(
+ trainer = GaudiTrainer(
model=model,
args=training_args,
train_dataset=train_dataset
... # other arguments
)
where gaudi_config_name
is the name of a model from the Hub a path to a local Gaudi configuration file.
Gaudi configurations are stored as JSON files in model repositories but you can write your own.
More information can be found here.
Diffusers
🤗 Optimum for Intel Gaudi also features HPU-optimized support for the 🤗 Diffusers library. Thus, you can easily deploy Stable Diffusion on Gaudi for performing text-to-image generation.
Here is how to use it and the differences with the 🤗 Diffusers library:
- from diffusers import DDIMScheduler, StableDiffusionPipeline
+ from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
model_name = "runwayml/stable-diffusion-v1-5"
- scheduler = DDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
+ scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
- pipeline = StableDiffusionPipeline.from_pretrained(
+ pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
scheduler=scheduler,
+ use_habana=True,
+ use_hpu_graphs=True,
+ gaudi_config="Habana/stable-diffusion",
)
outputs = pipeline(
["An image of a squirrel in Picasso style"],
num_images_per_prompt=16,
+ batch_size=4,
)