|
|
|
--- |
|
license: mit |
|
base_model: warp-ai/wuerstchen-prior |
|
datasets: |
|
- dongOi071102/meme-pretreatment-dataset-100rows |
|
tags: |
|
- wuerstchen |
|
- text-to-image |
|
- diffusers |
|
- diffusers-training |
|
- lora |
|
inference: true |
|
--- |
|
|
|
# LoRA Finetuning - dongOi071102/wuerstchen-prior-naruto-lora-2 |
|
|
|
This pipeline was finetuned from **warp-ai/wuerstchen-prior** on the **dongOi071102/meme-pretreatment-dataset-100rows** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['a catton cat with angry face']: |
|
|
|
![val_imgs_grid](./val_imgs_grid.png) |
|
|
|
|
|
## Pipeline usage |
|
|
|
You can use the pipeline like so: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained( |
|
"warp-ai/wuerstchen", torch_dtype=float32 |
|
) |
|
# load lora weights from folder: |
|
pipeline.prior_pipe.load_lora_weights("dongOi071102/wuerstchen-prior-naruto-lora-2", torch_dtype=float32) |
|
|
|
image = pipeline(prompt=prompt).images[0] |
|
image.save("my_image.png") |
|
``` |
|
|
|
## Training info |
|
|
|
These are the key hyperparameters used during training: |
|
|
|
* LoRA rank: 4 |
|
* Epochs: 5 |
|
* Learning rate: 0.0002 |
|
* Batch size: 8 |
|
* Gradient accumulation steps: 1 |
|
* Image resolution: 512 |
|
* Mixed-precision: fp16 |
|
|
|
|
|
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/2111818-no/text2image-fine-tune/runs/js2o268h). |
|
|