wav2vec-large-en / README.md
dongim04's picture
End of training
61abf97 verified
|
raw
history blame
3.84 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec-large-en
    results: []

wav2vec-large-en

This model is a fine-tuned version of facebook/wav2vec2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.2821
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0558 0.7042 100 7.1035 1.0
5.3678 1.4085 200 7.4719 1.0
5.2548 2.1127 300 7.3891 1.0
5.1982 2.8169 400 7.2118 1.0
5.1951 3.5211 500 7.0877 1.0
5.1829 4.2254 600 7.2987 1.0
5.1937 4.9296 700 7.3988 1.0
5.1905 5.6338 800 7.3964 1.0
5.2445 6.3380 900 7.2698 1.0
5.139 7.0423 1000 7.1558 1.0
5.1925 7.7465 1100 7.2421 1.0
5.2231 8.4507 1200 7.2611 1.0
5.2901 9.1549 1300 7.3504 1.0
5.0849 9.8592 1400 7.3211 1.0
5.3853 10.5634 1500 7.1273 1.0
5.2707 11.2676 1600 7.2369 1.0
5.1156 11.9718 1700 7.3677 1.0
5.1589 12.6761 1800 7.3260 1.0
5.1839 13.3803 1900 7.2956 1.0
5.3138 14.0845 2000 7.1808 1.0
5.2344 14.7887 2100 7.2265 1.0
5.1787 15.4930 2200 7.3030 1.0
5.1879 16.1972 2300 7.2975 1.0
5.106 16.9014 2400 7.2839 1.0
5.3462 17.6056 2500 7.2212 1.0
5.0687 18.3099 2600 7.2478 1.0
5.1134 19.0141 2700 7.2222 1.0
5.1133 19.7183 2800 7.3043 1.0
5.2053 20.4225 2900 7.3150 1.0
5.205 21.1268 3000 7.2460 1.0
5.2558 21.8310 3100 7.2312 1.0
5.215 22.5352 3200 7.2725 1.0
5.1499 23.2394 3300 7.2609 1.0
5.152 23.9437 3400 7.3052 1.0
5.2532 24.6479 3500 7.2958 1.0
5.3097 25.3521 3600 7.2818 1.0
5.1221 26.0563 3700 7.2260 1.0
5.2023 26.7606 3800 7.2648 1.0
5.1029 27.4648 3900 7.2708 1.0
5.085 28.1690 4000 7.2965 1.0
5.2273 28.8732 4100 7.2845 1.0
5.2394 29.5775 4200 7.2821 1.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1