whisper-base-zh / README.md
dongim04's picture
Initial model upload
14fffed verified
|
raw
history blame
2.08 kB
metadata
library_name: transformers
language:
  - zh
license: apache-2.0
base_model: openai/whisper-base
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - aimpower/mandarin_stutter_speech
metrics:
  - wer
model-index:
  - name: Whisper Base ZH - Dongim Lee
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: AImpower Mandarin Stutter Speech
          type: aimpower/mandarin_stutter_speech
          config: zh
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 87.24489795918367

Whisper Base ZH - Dongim Lee

This model is a fine-tuned version of openai/whisper-base on the AImpower Mandarin Stutter Speech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4500
  • Wer: 87.2449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2036 2.0704 1000 0.3756 86.5816
0.0885 4.1408 2000 0.3903 86.2245
0.0367 6.2112 3000 0.4295 86.8878
0.0242 8.2816 4000 0.4500 87.2449

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1