whisper-small-amet / README.md
drmeeseeks's picture
update model card README.md
15c2d19
|
raw
history blame
2.98 kB
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Amharic FLEURS
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs am_et
          type: google/fleurs
          config: am_et
          split: validation
          args: am_et
        metrics:
          - name: Wer
            type: wer
            value: 100

Whisper Small Amharic FLEURS

This model is a fine-tuned version of openai/whisper-small on the google/fleurs am_et dataset. It achieves the following results on the evaluation set:

  • Loss: 6.8012
  • Wer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9013 100.0 100 2.7051 276.0
0.0002 200.0 200 3.7415 334.6667
0.0001 300.0 300 3.8402 117.3333
0.0001 400.0 400 3.8931 340.0
0.0001 500.0 500 4.0671 397.3333
0.0001 600.0 600 4.2844 137.3333
0.0 700.0 700 4.4697 289.3333
0.0 800.0 800 4.6278 449.3333
0.0 900.0 900 4.7794 678.6667
0.0405 1000.0 1000 4.6769 261.3333
0.0002 1100.0 1100 5.4995 100.0
0.0002 1200.0 1200 6.0033 100.0
0.0002 1300.0 1300 6.2884 100.0
0.0002 1400.0 1400 6.4744 100.0
0.0002 1500.0 1500 6.5964 100.0
0.0001 1600.0 1600 6.6792 100.0
0.0001 1700.0 1700 6.7370 100.0
0.0001 1800.0 1800 6.7735 100.0
0.0001 1900.0 1900 6.7958 100.0
0.0001 2000.0 2000 6.8012 100.0

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2