Text Classification
Transformers
Safetensors
bert
lid
Language Identification
African Languages
Inference Endpoints
File size: 5,268 Bytes
6adad0e
4b03b43
 
 
 
 
 
 
 
 
 
8e65d68
 
1050804
4b03b43
 
8e65d68
 
 
 
 
 
 
 
6adad0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac14e22
6adad0e
 
 
4b03b43
6adad0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244426
6adad0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244426
6adad0e
1244426
6adad0e
1244426
6adad0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
license: cc-by-sa-4.0
language:
- ts
- nr
- ve
- xh
- zu
- af
- en
- st
- ss
- nso
- tn
library_name: transformers
pipeline_tag: text-classification
datasets:
- dsfsi/vukuzenzele-monolingual
metrics:
- accuracy
tags:
- lid
- Language Identification
- African Languages
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Thapelo Sindane, Vukosi Marivate
- **Shared by [optional]:** DSFSI
- **Model type:** BERT
- **Language(s) (NLP):** Sepedi (nso), Sesotho(sot), Setswana(tsn), Xitsonga(tso), Isindebele(nr), Tshivenda(ven), IsiXhosa(xho), IsiZulu(zul), IsiSwati(ssw), Afrikaans(af), and English(en)
- **License:** CC-BY-SA
- **Finetuned from model [optional]:** N/A

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

Models must be used for language identification of the South African languages identified above

### Direct Use

LID for low-resourced languages

### Downstream Use [optional]

Language data filtering and identification

[More Information Needed]

### Out-of-Scope Use

Language detection in code-switched data.

[More Information Needed]

## Bias, Risks, and Limitations
Requires GPU to run fast

[More Information Needed]

### Recommendations

Do not use for sensitive tasks. Model at an infant stage.

## How to Get Started with the Model

Use the code below to get started with the model.




## Training Details

### Training Data

The source data used to train the model came from the paper 'Preparing Vuk...' referenced below:
* Lastrucci, R., Dzingirai, I., Rajab, J., Madodonga, A., Shingange, M., Njini, D. and Marivate, V., 2023. Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora. arXiv preprint arXiv:2303.03750.

Number of sentences in datasets:
'nso': 5007,
'tsn': 4851,
'sot': 5075,
'xho': 5219,
'zul': 5103,
'nbl': 5600,
'ssw': 5210,
'ven': 5119,
'tso': 5193,
'af': 5252,
'eng': 5552
Train Test split: Train: 70% of minimum,  15% of minimum size, Dev: remaining sample


### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]