Edit model card

llama381binstruct_summarize_short

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.7173 1.25 25 1.6227
0.8099 2.5 50 1.5926
0.3572 3.75 75 1.7290
0.1907 5.0 100 1.8269
0.101 6.25 125 2.0608
0.0383 7.5 150 2.2592
0.0268 8.75 175 2.1757
0.0202 10.0 200 2.1768
0.0159 11.25 225 2.2593
0.0063 12.5 250 2.2801
0.004 13.75 275 2.3952
0.0032 15.0 300 2.4333
0.0031 16.25 325 2.4696
0.0021 17.5 350 2.4861
0.0025 18.75 375 2.4947
0.0022 20.0 400 2.5028
0.002 21.25 425 2.5074
0.0019 22.5 450 2.5114
0.0017 23.75 475 2.5130
0.0022 25.0 500 2.5135

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dstampfli/llama381binstruct_summarize_short

Adapter
(70)
this model