ASR-test / README.md
ducha07's picture
Update README.md
9c5b1e7
|
raw
history blame
4.22 kB
metadata
language:
  - vi
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - ducha07/audio_HTV_thoisu
metrics:
  - wer
model-index:
  - name: ASR-test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: HTV news
          type: ducha07/audio_HTV_thoisu
        metrics:
          - name: Wer
            type: wer
            value: 0.2882930019620667

ASR-test-1

This model is a fine-tuned version of facebook/mms-1b-all on the HTV news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5663
  • Wer: 0.2883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.772 0.92 100 0.8456 0.4411
1.1042 1.83 200 0.7041 0.4076
0.9814 2.75 300 0.7243 0.3782
0.9096 3.67 400 0.6771 0.3655
0.8823 4.59 500 0.6265 0.3627
0.8435 5.5 600 0.6200 0.3543
0.8157 6.42 700 0.6414 0.3417
0.822 7.34 800 0.5872 0.3431
0.7852 8.26 900 0.6012 0.3387
0.7533 9.17 1000 0.6023 0.3256
0.7609 10.09 1100 0.5837 0.3444
0.7568 11.01 1200 0.5791 0.3311
0.7091 11.93 1300 0.6227 0.3206
0.7098 12.84 1400 0.5766 0.3266
0.7006 13.76 1500 0.6084 0.3117
0.6673 14.68 1600 0.5857 0.3120
0.6832 15.6 1700 0.5754 0.3338
0.6646 16.51 1800 0.5963 0.3117
0.6524 17.43 1900 0.5816 0.3137
0.6385 18.35 2000 0.5691 0.3257
0.6433 19.27 2100 0.5929 0.3105
0.6129 20.18 2200 0.5709 0.3067
0.624 21.1 2300 0.5686 0.3168
0.6128 22.02 2400 0.5867 0.3080
0.584 22.94 2500 0.5680 0.3101
0.5956 23.85 2600 0.5611 0.3023
0.5825 24.77 2700 0.5821 0.2999
0.56 25.69 2800 0.5622 0.3012
0.56 26.61 2900 0.5590 0.3053
0.5523 27.52 3000 0.5758 0.2967
0.5335 28.44 3100 0.5649 0.3090
0.5686 29.36 3200 0.5703 0.2931
0.5488 30.28 3300 0.5709 0.2921
0.5249 31.19 3400 0.5646 0.2973
0.5278 32.11 3500 0.5628 0.2933
0.5252 33.03 3600 0.5663 0.2927
0.5092 33.94 3700 0.5618 0.2922
0.5099 34.86 3800 0.5616 0.2954
0.5031 35.78 3900 0.5670 0.2913
0.4959 36.7 4000 0.5679 0.2923
0.4936 37.61 4100 0.5675 0.2912
0.5012 38.53 4200 0.5661 0.2897
0.4819 39.45 4300 0.5663 0.2883

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0