metadata
language:
- vi
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- ducha07/audio_HTV_thoisu
metrics:
- wer
model-index:
- name: ASR-test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: HTV news
type: ducha07/audio_HTV_thoisu
metrics:
- name: Wer
type: wer
value: 0.2796665364074508
ASR-test-1
This model is a fine-tuned version of facebook/mms-1b-all on the HTV news dataset. It achieves the following results on the evaluation set:
- Loss: 0.6593
- Wer: 0.2797
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.8562 | 0.92 | 100 | 0.8316 | 0.4500 |
1.0777 | 1.83 | 200 | 0.6898 | 0.3899 |
0.98 | 2.75 | 300 | 0.6811 | 0.3740 |
0.8967 | 3.67 | 400 | 0.6332 | 0.3565 |
0.8965 | 4.59 | 500 | 0.6038 | 0.3517 |
0.8396 | 5.5 | 600 | 0.6040 | 0.3479 |
0.8137 | 6.42 | 700 | 0.5929 | 0.3408 |
0.8304 | 7.34 | 800 | 0.5911 | 0.3513 |
0.7894 | 8.26 | 900 | 0.6078 | 0.3357 |
0.7412 | 9.17 | 1000 | 0.6214 | 0.3230 |
0.7653 | 10.09 | 1100 | 0.5869 | 0.3444 |
0.7437 | 11.01 | 1200 | 0.5906 | 0.3213 |
0.7083 | 11.93 | 1300 | 0.5952 | 0.3139 |
0.7168 | 12.84 | 1400 | 0.5721 | 0.3267 |
0.7008 | 13.76 | 1500 | 0.5895 | 0.3177 |
0.6825 | 14.68 | 1600 | 0.5909 | 0.3098 |
0.6989 | 15.6 | 1700 | 0.5979 | 0.3673 |
0.6717 | 16.51 | 1800 | 0.5863 | 0.3077 |
0.6496 | 17.43 | 1900 | 0.5798 | 0.3043 |
0.6609 | 18.35 | 2000 | 0.5787 | 0.3555 |
0.628 | 19.27 | 2100 | 0.5889 | 0.3133 |
0.6322 | 20.18 | 2200 | 0.5913 | 0.3077 |
0.634 | 21.1 | 2300 | 0.5769 | 0.3193 |
0.6172 | 22.02 | 2400 | 0.5731 | 0.3005 |
0.6043 | 22.94 | 2500 | 0.5820 | 0.3075 |
0.6051 | 23.85 | 2600 | 0.5831 | 0.3435 |
0.5865 | 24.77 | 2700 | 0.5790 | 0.3029 |
0.5806 | 25.69 | 2800 | 0.5945 | 0.3053 |
0.5901 | 26.61 | 2900 | 0.5780 | 0.3126 |
0.5769 | 27.52 | 3000 | 0.5732 | 0.2963 |
0.5539 | 28.44 | 3100 | 0.5837 | 0.2950 |
0.5799 | 29.36 | 3200 | 0.5835 | 0.3178 |
0.5518 | 30.28 | 3300 | 0.5941 | 0.2943 |
0.549 | 31.19 | 3400 | 0.5960 | 0.2979 |
0.5612 | 32.11 | 3500 | 0.5747 | 0.3167 |
0.5411 | 33.03 | 3600 | 0.5855 | 0.2978 |
0.536 | 33.94 | 3700 | 0.5720 | 0.2944 |
0.5329 | 34.86 | 3800 | 0.5998 | 0.3186 |
0.5185 | 35.78 | 3900 | 0.5936 | 0.2884 |
0.5186 | 36.7 | 4000 | 0.5773 | 0.2901 |
0.5027 | 37.61 | 4100 | 0.5969 | 0.3264 |
0.52 | 38.53 | 4200 | 0.6184 | 0.2939 |
0.4992 | 39.45 | 4300 | 0.5887 | 0.2943 |
0.5064 | 40.37 | 4400 | 0.5814 | 0.2966 |
0.4928 | 41.28 | 4500 | 0.6128 | 0.2902 |
0.508 | 42.2 | 4600 | 0.5943 | 0.2923 |
0.4887 | 43.12 | 4700 | 0.6100 | 0.3039 |
0.4872 | 44.04 | 4800 | 0.6044 | 0.2875 |
0.4711 | 44.95 | 4900 | 0.5961 | 0.2974 |
0.4813 | 45.87 | 5000 | 0.6022 | 0.2945 |
0.4818 | 46.79 | 5100 | 0.6199 | 0.2898 |
0.4492 | 47.71 | 5200 | 0.6161 | 0.2943 |
0.4715 | 48.62 | 5300 | 0.6038 | 0.2838 |
0.4601 | 49.54 | 5400 | 0.6223 | 0.2829 |
0.4432 | 50.46 | 5500 | 0.6058 | 0.2965 |
0.4419 | 51.38 | 5600 | 0.6134 | 0.2917 |
0.4564 | 52.29 | 5700 | 0.6124 | 0.2857 |
0.4349 | 53.21 | 5800 | 0.6229 | 0.2877 |
0.4358 | 54.13 | 5900 | 0.6095 | 0.2898 |
0.4432 | 55.05 | 6000 | 0.6365 | 0.2881 |
0.4277 | 55.96 | 6100 | 0.6169 | 0.2870 |
0.4397 | 56.88 | 6200 | 0.6174 | 0.2849 |
0.4245 | 57.8 | 6300 | 0.6340 | 0.2858 |
0.4203 | 58.72 | 6400 | 0.6321 | 0.2909 |
0.4112 | 59.63 | 6500 | 0.6243 | 0.2866 |
0.4244 | 60.55 | 6600 | 0.6318 | 0.2775 |
0.4119 | 61.47 | 6700 | 0.6215 | 0.2798 |
0.403 | 62.39 | 6800 | 0.6213 | 0.2829 |
0.4158 | 63.3 | 6900 | 0.6451 | 0.2795 |
0.3997 | 64.22 | 7000 | 0.6317 | 0.2854 |
0.4006 | 65.14 | 7100 | 0.6329 | 0.2846 |
0.4051 | 66.06 | 7200 | 0.6318 | 0.2834 |
0.3953 | 66.97 | 7300 | 0.6442 | 0.2855 |
0.4119 | 67.89 | 7400 | 0.6345 | 0.2893 |
0.3976 | 68.81 | 7500 | 0.6361 | 0.2798 |
0.3965 | 69.72 | 7600 | 0.6355 | 0.2853 |
0.3957 | 70.64 | 7700 | 0.6457 | 0.2814 |
0.3837 | 71.56 | 7800 | 0.6396 | 0.2855 |
0.3893 | 72.48 | 7900 | 0.6424 | 0.2842 |
0.3816 | 73.39 | 8000 | 0.6496 | 0.2778 |
0.3855 | 74.31 | 8100 | 0.6427 | 0.2881 |
0.3767 | 75.23 | 8200 | 0.6394 | 0.2858 |
0.3747 | 76.15 | 8300 | 0.6513 | 0.2844 |
0.3829 | 77.06 | 8400 | 0.6602 | 0.2775 |
0.3721 | 77.98 | 8500 | 0.6427 | 0.2825 |
0.3708 | 78.9 | 8600 | 0.6507 | 0.2847 |
0.3767 | 79.82 | 8700 | 0.6518 | 0.2816 |
0.3655 | 80.73 | 8800 | 0.6597 | 0.2802 |
0.3614 | 81.65 | 8900 | 0.6542 | 0.2781 |
0.3629 | 82.57 | 9000 | 0.6520 | 0.2782 |
0.3621 | 83.49 | 9100 | 0.6501 | 0.2797 |
0.3616 | 84.4 | 9200 | 0.6528 | 0.2777 |
0.3519 | 85.32 | 9300 | 0.6549 | 0.2798 |
0.3572 | 86.24 | 9400 | 0.6541 | 0.2789 |
0.3585 | 87.16 | 9500 | 0.6497 | 0.2778 |
0.3531 | 88.07 | 9600 | 0.6523 | 0.2781 |
0.3586 | 88.99 | 9700 | 0.6578 | 0.2789 |
0.3463 | 89.91 | 9800 | 0.6565 | 0.2816 |
0.3508 | 90.83 | 9900 | 0.6559 | 0.2797 |
0.3513 | 91.74 | 10000 | 0.6611 | 0.2794 |
0.3425 | 92.66 | 10100 | 0.6538 | 0.2804 |
0.3596 | 93.58 | 10200 | 0.6639 | 0.2808 |
0.3632 | 94.5 | 10300 | 0.6561 | 0.2789 |
0.348 | 95.41 | 10400 | 0.6556 | 0.2786 |
0.3514 | 96.33 | 10500 | 0.6575 | 0.2791 |
0.3499 | 97.25 | 10600 | 0.6573 | 0.2795 |
0.3353 | 98.17 | 10700 | 0.6589 | 0.2797 |
0.3468 | 99.08 | 10800 | 0.6589 | 0.2799 |
0.3571 | 100.0 | 10900 | 0.6593 | 0.2797 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0