way2vec2-VNmese / README.md
ducha07's picture
End of training
9ceac0d verified
metadata
language:
  - vi
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - ducha07/audio_HTV_thoisu
metrics:
  - wer
model-index:
  - name: ASR4-for-40-epochs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: HTV news
          type: ducha07/audio_HTV_thoisu
        metrics:
          - name: Wer
            type: wer
            value: 0.26843348202571504

ASR4-for-40-epochs

This model is a fine-tuned version of facebook/mms-1b-all on the HTV news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4791
  • Wer: 0.2684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.1111 0.92 100 0.7687 0.4387
1.1201 1.83 200 0.6388 0.3767
0.9734 2.75 300 0.6319 0.3658
0.9297 3.67 400 0.5740 0.3373
0.9142 4.59 500 0.5591 0.3268
0.8462 5.5 600 0.5627 0.3227
0.8366 6.42 700 0.5491 0.3158
0.8272 7.34 800 0.5398 0.3243
0.8137 8.26 900 0.5363 0.3113
0.7643 9.17 1000 0.5528 0.3117
0.7738 10.09 1100 0.5194 0.3285
0.7622 11.01 1200 0.5348 0.3043
0.707 11.93 1300 0.5179 0.2909
0.7242 12.84 1400 0.5153 0.3138
0.7093 13.76 1500 0.5116 0.2951
0.673 14.68 1600 0.5002 0.2941
0.6877 15.6 1700 0.4958 0.3050
0.6665 16.51 1800 0.5032 0.2865
0.6507 17.43 1900 0.4871 0.2809
0.6308 18.35 2000 0.4953 0.2947
0.6507 19.27 2100 0.4998 0.2837
0.6027 20.18 2200 0.4963 0.2868
0.623 21.1 2300 0.4955 0.2953
0.6047 22.02 2400 0.5034 0.2852
0.5825 22.94 2500 0.4781 0.2795
0.585 23.85 2600 0.4851 0.2843
0.5838 24.77 2700 0.4957 0.2742
0.5718 25.69 2800 0.4885 0.2810
0.5646 26.61 2900 0.4778 0.2724
0.5476 27.52 3000 0.4914 0.2751
0.5333 28.44 3100 0.4879 0.2788
0.5533 29.36 3200 0.4820 0.2726
0.5321 30.28 3300 0.4816 0.2686
0.5161 31.19 3400 0.4865 0.2812
0.5326 32.11 3500 0.4818 0.2704
0.5188 33.03 3600 0.4816 0.2669
0.506 33.94 3700 0.4804 0.2755
0.5122 34.86 3800 0.4803 0.2667
0.506 35.78 3900 0.4785 0.2708
0.5064 36.7 4000 0.4755 0.2730
0.4997 37.61 4100 0.4804 0.2708
0.4904 38.53 4200 0.4772 0.2678
0.4774 39.45 4300 0.4791 0.2684

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0