metadata
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-finetuned
results: []
deberta-finetuned
This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2816
- Accuracy: 0.9196
- F1: 0.9437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.4227 | 1.0 | 574 | 0.2411 | 0.9108 | 0.9390 |
0.2574 | 2.0 | 1148 | 0.2203 | 0.9196 | 0.9434 |
0.2273 | 3.0 | 1722 | 0.2734 | 0.9098 | 0.9358 |
0.2048 | 4.0 | 2296 | 0.2758 | 0.9186 | 0.9431 |
0.1746 | 5.0 | 2870 | 0.2816 | 0.9196 | 0.9437 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1