metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-train
results: []
roberta-train
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3792
- Accuracy: 0.8578
- F1: 0.8997
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 120 | 0.5343 | 0.6859 | 0.8137 |
No log | 2.0 | 240 | 0.4516 | 0.8203 | 0.8796 |
No log | 3.0 | 360 | 0.4077 | 0.8406 | 0.8922 |
No log | 4.0 | 480 | 0.4011 | 0.8531 | 0.8996 |
0.466 | 5.0 | 600 | 0.3792 | 0.8578 | 0.8997 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1